DELTA-CONVEXITY WITH GIVEN WEIGHTS

Roman Ger (id

Dedicated to Professor Zygfryd Kominek on the occasion of his 75th birthday

Abstract

Some differentiability results from the paper of D.Ş. Marinescu \& M. Monea [7] on delta-convex mappings, obtained for real functions, are extended for mappings with values in a normed linear space. In this way, we are nearing the completion of studies established in papers [2, [5] and [7].

1. Motivation and main results

While solving Problem 11641 posed by a Romanian mathematician Nicolae Bourbăcuţ in [2] I was announcing in [5] (without proof) the following

Theorem 1.1. Assume that we are given a differentiable function φ mapping an open real interval (a, b) into the real line \mathbb{R}. Then each convex solution $f:(a, b) \longrightarrow \mathbb{R}$ of the functional inequality
$(*) \quad \frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right) \leq \frac{\varphi(x)+\varphi(y)}{2}-\varphi\left(\frac{x+y}{2}\right), \quad x, y \in(a, b)$,

[^0]is differentiable and the inequality
$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq\left|\varphi^{\prime}(x)-\varphi^{\prime}(y)\right|
$$
holds true for all $x, y \in(a, b)$.
The proof reads as follows.
Put $g:=f-\varphi$. Then $(*)$ states nothing else but the Jensen concavity of g, i.e.
$$
\frac{1}{2} g(x)+\frac{1}{2} g(y) \leq g\left(\frac{x+y}{2}\right), \quad x, y \in(a, b)
$$

It is widely known that a continuous Jensen concave function is concave in the usual sense. Since f itself is continuous (as a convex function on an open interval) and φ is differentiable then, obviously, our function g is continuous and hence concave. In particular, the one-sided dervatives of g do exist on (a, b) and we have

$$
g_{+}^{\prime}(x) \leq g_{-}^{\prime}(x) \quad \text { for all } \quad x \in(a, b)
$$

Therefore

$$
f_{+}^{\prime}(x)=g_{+}^{\prime}(x)+\varphi^{\prime}(x) \leq g_{-}^{\prime}(x)+\varphi^{\prime}(x)=f_{-}^{\prime}(x) \leq f_{+}^{\prime}(x)
$$

for all $x \in(a, b)$ because of the convexity of f, which proves the differentiability of f on (a, b).

To show that f satisfies the assertion inequality, observe that whenever $x, y \in(a, b)$ are such that $x \leq y$, then

$$
\begin{aligned}
\left|f^{\prime}(x)-f^{\prime}(y)\right| & =f^{\prime}(y)-f^{\prime}(x)=g^{\prime}(y)+\varphi^{\prime}(y)-g^{\prime}(x)-\varphi^{\prime}(x) \\
& \leq \varphi^{\prime}(y)-\varphi^{\prime}(x)=\left|\varphi^{\prime}(x)-\varphi^{\prime}(y)\right|
\end{aligned}
$$

because the derivative of a differentiable convex (resp. concave) function is increasing (resp. decreasing). In the case where $y \leq x$ it suffices to interchange the roles of the variables x and y in the latter inequality, which completes the proof.

Note that the convexity assumption imposed upon f in the above result renders $(*)$ to be equivalent to

$$
\left|\frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right)\right| \leq \frac{\varphi(x)+\varphi(y)}{2}-\varphi\left(\frac{x+y}{2}\right), \quad x, y \in(a, b)
$$

defining (in the class of continuous functions) the notion of delta convexity in the sense of L. Veselý and L. Zajíček (see [10]).

In that connection, D.Ş. Marinescu and M. Monea have proved, among others, the following result (see [7, Theorem 2.7]).

Theorem M-M. Let $\varphi:(a, b) \longrightarrow \mathbb{R}$ be a differentiable function and let $f:(a, b) \longrightarrow \mathbb{R}$ be a convex function admitting some scalars $s, t \in(0,1)$ such that the inequality

$$
\begin{aligned}
& t f(x)+(1-t) f(y)-f(s x+(1-s) y) \\
& \leq t \varphi(x)+(1-t) \varphi(y)-\varphi(s x+(1-s) y)
\end{aligned}
$$

is satisfied for all $x, y \in(a, b)$. Then the function f is differentiable and the inequality

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq\left|\varphi^{\prime}(x)-\varphi^{\prime}(y)\right|
$$

holds true for all $x, y \in(a, b)$.
Without any convexity assumption we offer the following counterpart of Theorem M-M for vector valued mappings.

Theorem 1.2. Given an open interval $(a, b) \subset \mathbb{R}$, a normed linear space $(E,\|\cdot\|)$, and two real numbers $s, t \in(0,1)$ (weights) assume that a map $F:(a, b) \longrightarrow E$ is delta (s, t)-convex with a differentiable control function $f:(a, b) \longrightarrow \mathbb{R}$, i.e. that a functional inequality

$$
\begin{aligned}
\| t F(x)+(1-t) F(y)-F(s x+ & (1-s) y) \| \\
& \leq t f(x)+(1-t) f(y)-f(s x+(1-s) y)
\end{aligned}
$$

is satisfied for all $x, y \in(a, b)$. If the function

$$
(a, b) \ni x \longmapsto\|F(x)\| \in \mathbb{R}
$$

is upper bounded on a set of positive Lebesgue measure, then F is differentiable and the inequality

$$
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq\left|f^{\prime}(x)-f^{\prime}(y)\right|
$$

holds true for all $x, y \in(a, b)$.

Corollary. Under the assumptions of Theorem 1.2 , the vector valued map F is continuously differentiable.

Proof. Fix arbitrarily an $x \in(a, b)$ and $h \in \mathbb{R}$ small enough to have $x+h \in(a, b)$ as well. Then

$$
\left\|F^{\prime}(x+h)-F^{\prime}(x)\right\| \leq\left|f^{\prime}(x+h)-f^{\prime}(x)\right|
$$

and the right-hand side difference tends to zero as $h \rightarrow 0$ because a differentiable convex function is of class C^{1}.

The assumption that the function

$$
(a, b) \ni x \longmapsto\|F(x)\| \in \mathbb{R}
$$

is upper bounded on a set of positive Lebesgue measure, may be replaced by numerous alternative conditions forcing a scalar Jensen convex function on (a, b) to be continuous.

Theorem 1.3. Given an open interval $(a, b) \subset \mathbb{R}$, a normed linear space $(E,\|\cdot\|)$ that is reflexive or constitutes a separable dual space, and two weights $s, t \in(0,1)$, assume that a map $F:(a, b) \longrightarrow E$ is delta (s, t)-convex with a C^{2}-control function $f:(a, b) \longrightarrow \mathbb{R}$. If the function

$$
(a, b) \ni x \longmapsto\|F(x)\| \in \mathbb{R}
$$

is upper bounded on a set of positive Lebesgue measure, then F is twice differentiable almost everywhere in (a, b) and the domination

$$
\left\|F^{\prime \prime}(x)\right\| \leq f^{\prime \prime}(x)
$$

holds true for almost all $x \in(a, b)$.
The assumption that a normed linear space $(E,\|\cdot\|)$ spoken of in Theorem 1.3 is reflexive or constitutes a separable dual space may be replaced by a more general requirement that $(E,\|\cdot\|)$ has the Radon-Nikodym property (RNP), i.e. that every Lipschitz function from \mathbb{R} into E is differentiable almost everywhere. This definition (of Rademacher type character) is not commonly used but is more relevant to the subject of the present paper. R.S. Phillips 9 showed that reflexive Banach spaces enjoy the RNP whereas N. Dunford and B.J. Pettis [3] proved that separable dual spaces have the RNP.

2. Proofs

To prove Theorem 1.2 we need the following
Lemma. Given weights $s, t \in(0,1)$ assume that a map $F:(a, b) \longrightarrow E$ is delta (s, t)-convex with a control function $f:(a, b) \longrightarrow \mathbb{R}$. Then the inequality

$$
\begin{aligned}
\| \lambda F(x)+(1-\lambda) F(y)-F(\lambda x & +(1-\lambda) y) \| \\
& \leq \lambda f(x)+(1-\lambda) f(y)-f(\lambda x+(1-\lambda) y)
\end{aligned}
$$

is valid for all $x, y \in(a, b)$ and every rational $\lambda \in(0,1)$. In particular, F is delta Jensen convex with a control function f, i.e. the inequality

$$
\left\|\frac{F(x)+F(y)}{2}-F\left(\frac{x+y}{2}\right)\right\| \leq \frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right)
$$

holds true for all $x, y \in(a, b)$.
Proof. Fix arbitrarily a continuous linear functional x^{*} from the unit ball in the dual space E^{*}. Then the delta (s, t)-convexity of F implies that for all $x, y \in(a, b)$ one has

$$
\begin{aligned}
t\left(x^{*} \circ F\right)(x)+(1-t)\left(x^{*} \circ F\right)(y) & -\left(x^{*} \circ F\right)(s x+(1-s) y) \\
& \leq t f(x)+(1-t) f(y)-f(s x+(1-s) y)
\end{aligned}
$$

or, equivalently,

$$
\left(f-x^{*} \circ F\right)(s x+(1-s) y) \leq t\left(f-x^{*} \circ F\right)(x)+(1-t)\left(f-x^{*} \circ F\right)(y)
$$

By means of Theorem 3 from N. Kuhn's paper [6] we deduce that the function $g:=f-x^{*} \circ F$ enjoys the convexity type property

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y), \quad x, y \in(a, b), \lambda \in(0,1) \cap \mathbb{Q}
$$

where \mathbb{Q} stands for the field of all rationals. Consequently, for all $x, y \in(a, b)$ and $\lambda \in(0,1) \cap \mathbb{Q}$, we get the inequality

$$
\begin{aligned}
\lambda\left(x^{*} \circ F\right)(x)+(1-\lambda)\left(x^{*} \circ F\right) & (y)-\left(x^{*} \circ F\right)(\lambda x+(1-\lambda) y) \\
& \leq \lambda f(x)+(1-\lambda) f(y)-f(\lambda x+(1-\lambda) y)
\end{aligned}
$$

Replacing here the functional x^{*} by $-x^{*}$ we infer that a fortiori

$$
\begin{aligned}
\mid x^{*}(\lambda F(x)+(1-\lambda) F(y)-F & (\lambda x+(1-\lambda) y)) \mid \\
& \leq \lambda f(x)+(1-\lambda) f(y)-f(\lambda x+(1-\lambda) y)
\end{aligned}
$$

which due to the unrestricted choice of x^{*} gives the assertion desired.
Remark 2.1. Using another method, A. Olbryś ([8, Lemma 1]) with the aid of the celebrated Daróczy and Páles identity

$$
\frac{x+y}{2}=s\left[s \frac{x+y}{2}+(1-s) y\right]+(1-s)\left[s x+(1-s) \frac{x+y}{2}\right]
$$

has proved that any delta (s, t)-convex map on a convex subset of a real Banach space is necessarily delta Jensen convex.

Proof of Theorem 1.2, In view of the Lemma, F is delta Jensen convex with a control function f. Due to the differentiability of f and the regularity assumption upon F the map

$$
(a, b) \ni x \longmapsto f(x)+\|F(x)\| \in \mathbb{R}
$$

is upper bounded on a set of positive Lebesgue measure. Thus, with the aid of author's result from [4], we obtain the local Lipschitz property of F and, in particular, the fact that F is a delta convex map controlled by f in the sense of L. Veselý \& L. Zajíček (see [10]). Therefore, for any member x^{*} from the unit ball in the dual space E^{*} the function $g_{*}:=f+x^{*} \circ F$ is convex. Moreover, on account of Proposition 3.9 (i) in [10, p. 22] (see also Remark 2.2 , below), F yields a differentiable map. Hence, g_{*} is differentiable as well and the derivative g_{*}^{\prime} is increasing. Consequently, for any two fixed elements $x, y \in(a, b), x \leq y$, we obtain the inequality

$$
\begin{aligned}
\left(x^{*} \circ F\right)^{\prime}(x)-\left(x^{*} \circ F\right)^{\prime}(y) & =g_{*}^{\prime}(x)-f^{\prime}(x)-g_{*}^{\prime}(y)+f^{\prime}(y) \\
& \leq-f^{\prime}(x)+f^{\prime}(y) \leq\left|f^{\prime}(x)-f^{\prime}(y)\right|
\end{aligned}
$$

Replacing here the functional x^{*} by $-x^{*}$ we arrive at

$$
\left|x^{*}\left(F^{\prime}(x)-F^{\prime}(y)\right)\right|=\left|\left(x^{*} \circ F\right)^{\prime}(x)-\left(x^{*} \circ F\right)^{\prime}(y)\right| \leq\left|f^{\prime}(x)-f^{\prime}(y)\right|
$$

which, due to the unrestricted choice of x^{*} from the unit ball in E^{*}, implies that

$$
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq\left|f^{\prime}(x)-f^{\prime}(y)\right|
$$

In the case where $y \leq x$ it suffices to interchange the roles of x an y in the latter inequality. Thus the proof has been completed.

Remark 2.2. Actually, Proposition 3.9 (i) in [10, p. 22] states that F is even strongly differentiable at each point $x \in(a, b)$, i.e. for every $\varepsilon>0$ there exists a $\delta>0$ and an element $c(x) \in E$ such that for all points $u, v \in$ $(x-\delta, x+\delta) \subset(a, b), u \neq v$, one has

$$
\left\|\frac{F(v)-F(u)}{v-u}-c(x)\right\| \leq \varepsilon
$$

Obviously, every strongly differentiable map is differentiable (in general, in the sense of Fréchet).

Proof of Theorem 1.3. In view of Theorem 1.2, F is differentiable and the inequality

$$
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq\left|f^{\prime}(x)-f^{\prime}(y)\right|
$$

holds true for all $x, y \in(a, b)$. Let a closed interval $[\alpha, \beta]$ be contained in (a, b). Since, a continuously differentiable function, $\left.f^{\prime}\right|_{[\alpha, \beta]}$ yields an absolutely continuous function, for every $\varepsilon>0$ there exists a $\delta>0$ such that, for every finite collection of pairwise disjoint subintervals $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{k}, b_{k}\right)$ of $[\alpha, \beta]$ with $\sum_{i=1}^{k}\left(b_{i}-a_{i}\right)<\delta$, one has $\sum_{i=1}^{k}\left|f^{\prime}\left(b_{i}\right)-f^{\prime}\left(a_{i}\right)\right|<\varepsilon$, whence

$$
\sum_{i=1}^{k}\left\|F^{\prime}\left(b_{i}\right)-F^{\prime}\left(a_{i}\right)\right\| \leq \sum_{i=1}^{k}\left|f^{\prime}\left(b_{i}\right)-f^{\prime}\left(a_{i}\right)\right|<\varepsilon
$$

This proves that the map $\left.F^{\prime}\right|_{[\alpha, \beta]}$ is absolutely continuous as well. Since the space $(E,\|\cdot\|)$ enjoys the Radon-Nikodym property, in virtue of Theorem 5.21 from the monograph [1] by Y. Benyamini and J. Lindenstrauss, the map $\left.F^{\prime}\right|_{[\alpha, \beta]}$ is differentiable almost everywhere in $[\alpha, \beta]$, i.e. off some nullset $T \subset$ $[\alpha, \beta]$ the second derivative $F^{\prime \prime}(x)$ of F at x does exist for all $x \in[\alpha, \beta] \backslash T$.

Now, fix arbitrarily a strictly decreasing sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and a strictly increasing sequence $\left(\beta_{n}\right)_{n \in \mathbb{N}}$ such that $a<\alpha_{n}<\beta_{n}<b, n \in \mathbb{N}$, convergent to a and b, respectively. Then, for every $n \in \mathbb{N}$ one may find a nullset $T_{n} \subset$ $\left[\alpha_{n}, \beta_{n}\right]$ such that the second derivative $F^{\prime \prime}(x)$ of F at x does exist for all $x \in[\alpha, \beta] \backslash T_{n}$. Putting $T:=\bigcup_{n \in \mathbb{N}} T_{n}$ we obtain a set of Lebesgue measure zero, contained in (a, b), such that the second derivative $F^{\prime \prime}(x)$ does exist for all points $x \in(a, b) \backslash T$. Fix arbitrarily a point $x \in(a, b) \backslash T$. Then for any point $y \in(a, b) \backslash\{x\}$ we have

$$
\left\|\frac{F^{\prime}(y)-F^{\prime}(x)}{y-x}\right\| \leq\left|\frac{f^{\prime}(y)-f^{\prime}(x)}{y-x}\right|
$$

and passing to the limit as $y \rightarrow x$ we conclude that

$$
\left\|F^{\prime \prime}(x)\right\| \leq\left|f^{\prime \prime}(x)\right|=f^{\prime \prime}(x)
$$

because of the convexity of f, which completes the proof.

REmARK 2.3. Theorem 5.21 from [1] states, among others, that any absolutely continuous map from the unit interval $[0,1]$ into a normed linear space E with the Radon-Nikodym property is differentiable almost everywhere. It is an easy task to check (an affine change of variables) that any absolutely continuous map on a compact interval $[\alpha, \beta] \subset \mathbb{R}$ with values in E is almost everywhere differentiable as well.

References

[1] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society, Colloquium Publications, 48, American Mathematical Society, Providence, 2000.
[2] N. Bourbăcuţ, Problem 11641, Amer. Math. Monthly 119 (2012), no. 4, p. 345.
[3] N. Dunford and B.J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323-392.
[4] R. Ger, Stability aspects of delta-convexity, in: Th.M. Rasssias, J. Tabor (eds.), Stability of Mappings of Hyers-Ulam Type, Hadronic Press, Palm Harbor, 1994, pp. 99-109.
[5] R. Ger, A Functional Inequality, Solution of Problem 11641, Amer. Math. Monthly 121 (2014), no. 2, 174-175.
[6] N. Kuhn, On the structure of (s, t)-convex functions, in: W. Walter (ed.), General Inequalities. 5. Proceedings of the Fifth International Conference held in Oberwolfach, May 4-10, 1986, International Series of Numerical Mathematics, 80, Birkhäuser Verlag, Basel, 1987, pp. 161-174.
[7] D.Ş. Marinescu and M. Monea, An extension of a Ger's result, Ann. Math. Sil. 32 (2018), 263-274.
[8] A. Olbryś, A support theorem for delta (s, t)-convex mappings, Aequationes Math. $\mathbf{8 9}$ (2015), no. 3, 937-948.
[9] R.S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. 65 (1943), 108-136.
[10] L. Veselý and L. Zajíček, Delta-convex Mappings Between Banach Spaces and Applications, Dissertationes Math. (Rozprawy Mat.) 289, Polish Scientific Publishers, Warszawa, 1989.

Institute of Mathematics
University of Silesia in Katowice
Bankowa 14
40-007 Katowice
Poland
e-mail: roman.ger@us.edu.pl

[^0]: Received: 08.11.2019. Accepted: 06.03.2020. Published online: 08.05.2020.
 (2010) Mathematics Subject Classification: 39B62, 26A51, 26B25.

 Key words and phrases: delta convexity, Jensen delta convexity, delta (s, t)-convexity, functional inequalities, absolute continuity, Radon-Nikodym property (RNP).

