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ON ITERATION OF BIJECTIVE FUNCTIONS
WITH DISCONTINUITIES

Harald Fripertinger

Dedicated to Zygfryd Kominek on the occasion of his 75th birthday

Abstract. We present three different types of bijective functions f : I → I on
a compact interval I with finitely many discontinuities where certain iterates
of these functions will be continuous. All these examples are strongly related to
permutations, in particular to derangements in the first case, and permutations
with a certain number of successions (or small ascents) in the second case. All
functions of type III form a direct product of a symmetric group with a wreath
product. It will be shown that any iterative root F : J → J of the identity of
order k on a compact interval J with finitely many discontinuities is conjugate
to a function f of type III, i.e., F = ϕ−1 ◦ f ◦ ϕ where ϕ is a continuous,
bijective, and increasing mapping between J and [0, n] for some integer n.

1. Introduction

During the ISFE54 Zygfryd Kominek raised discussion about the behavior
of iterates of real functions with discontinuities. “Is it possible that the k-th
iterate of such a function is continuous?” During the problems and remarks

Received: 23.12.2019. Accepted: 03.06.2020. Published online: 09.07.2020.
(2010) Mathematics Subject Classification: 05A05, 39B12.
Key words and phrases: iteration of functions, bijective functions on a compact inter-

val, derangements, permutations with successions, wreath products, iterative roots of the
identity, enumeration.

c©2020 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
CC BY (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0001-7449-8532
http://creativecommons.org/licenses/by/4.0/


52 Harald Fripertinger

sessions there were some remarks concerning this topic by Roman Ger, Peter
Stadler and myself (cf. [6, Problem 2.5 and Problem 2.9]). Finally it turned
out that only surjective functions are interesting.

In order to obtain nice results it will also be assumed that these functions
are injective. In the present paper three different types of bijective functions
defined on a compact interval with finitely many removable and/or jump
discontinuities will be presented, where certain iterates of these functions will
be continuous. As a matter of fact, functions of type III are generalizations of
functions of type I or II. We will see that these examples of bijective functions
are strongly related to permutations of finite sets. Therefore, we consider
these functions also as discrete structures, and in addition to analyzing their
properties we will also try to enumerate them. This way we obtain an overview
on how many different types of these functions can be constructed.

2. Functions of type I

Let n ≥ 2 be an integer, I = [0, n+1] be the closed real interval, f : I → I
be a bijective function with n removable discontinuities in the points belong-
ing to n := {1, . . . , n}. From the context it should always be clear whether n
denotes a positive integer or a set of positive integers. Then f is a function of
type I, iff f(x) = x for x ∈ I \ n. Since f is bijective, for all j ∈ n there exists
some i ∈ n such that i 6= j and f(i) = j. Thus f restricted to n is a permu-
tation π = πf ∈ Sn, the symmetric group of n. It is free of fixed points, thus
it is a derangement. We call it the derangement obtained from f . Conversely,
to each derangement there corresponds exactly one function of type I.

Some relations between f and π are collected in

Lemma 2.1. Let f be a function of type I and π the derangement obtained
from f . Then
1. fk is continuous, iff fk = id.
2. fk(i) = πk(i), i ∈ n, k ∈ N.
3. fk is continuous, iff πk = id, iff the order ord(π) of π is a divisor of k.

There are various formulae known concerning the enumeration of derange-
ments. Let dn be the number of derangements in Sn, then it is also the number
of functions of type I having n discontinuities. E.g., following [2, page 182 and
180] there is a recursive formula

d0 = 1, d1 = 0, dn = (n− 1)(dn−1 + dn−2), n ≥ 2,



On iteration of bijective functions with discontinuities 53

Table 1. Numerical values of dn
n dn dn/n!

0 1 1
1 0 0
2 1 0.5
3 2 0.333333
4 9 0.375
5 44 0.366666
6 265 0.368055
7 1 854 0.367857
8 14 833 0.367881
9 133 496 0.367879
10 1 334 961 0.367879
11 14 684 570 0.367879
12 12 176 214 841 0.367879

and a formula based on the inclusion-exclusion principle

dn = n!

n∑
k=0

(−1)k

k!
, n ≥ 0.

These numbers dn can be found as A000166 in the On-Line Encyclopedia
of Integer Sequences (OEIS).

Some numerical values are presented in Table 1. Approximately 37% of all
permutations are derangements. Actually, it is easy to prove that

lim
n→∞

dn
n!

= lim
n→∞

n∑
k=0

(−1)k

k!
= e−1 ≈ 0.367879.

For example consider the derangement

π =

(
1 2 3 4 5
4 3 5 1 2

)
= (1, 4)(2, 3, 5) and the function f =
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https://oeis.org/A000166
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If π ∈ Sn decomposes into ai disjoint cycles of length i, for i ∈ n, we call
a = (a1, . . . , an) the cycle type of π. The order of π depends only on the cycle
type of π since it is the least common multiple of all cycle lengths occurring
in the decomposition of π. We can express ord(π) as the lcm{i ∈ n | ai 6= 0}
where a = (a1, . . . , an) is the cycle type of π. In general, a sequence of n
non-negative integer (a1, . . . , an) is a cycle type of a permutation π in Sn, iff∑

i∈n
iai = n.

Such sequences are sometimes called cycle types of n. From these considera-
tions and the example above it is clear that the following lemma holds true.

Lemma 2.2. Consider a positive integer k. Let f be a function of type I and
π the derangement obtained from f . The discontinuities of f corresponding to
any cycle of length i of π disappear in the k-th iterate fk of f , iff i | k.
Therefore, the number of discontinuities of fk is

n−
∑
i|k

iai =
∑
i 6 | k

iai.

We call the least positive integer k such that fk is continuous the order
of f written as ord(f). Thus ord(f) = ord(πf ) where πf is associated with f .

What is the maximum order of a function of type I with n discontinuities?
The maximum possible order of permutations in Sn is given by the Landau
function g(n) := max{ord(π) | π ∈ Sn}. It satisfies g(n) ≤ g(n + 1) for all
n. Furthermore, let g̃(n) := max{ord(π) | π ∈ Sn is a derangement} be the
maximum order of a derangement of n. It satisfies g(n− 2) ≤ g̃(n) ≤ g(n) for
all n ≥ 4. Whenever g(n−1) < g(n), then necessarily g̃(n) = g(n). Obviously,
g̃(n) is the maximum order of a function of type I with n discontinuities.

For example we list some values of g(n) and g̃(n) in Table 2. The numbers
g(n) and g̃(n) can be fund in the OEIS as A000793 and A123131 respectively.

In order to get an overview over all functions of type I with n discontinu-
ities it is enough to study functions where the associated derangements belong
to different conjugacy classes in Sn. The different conjugacy classes in Sn cor-
respond to the different cycle types of n. Consider two functions fi, i = 1, 2,
of type I where the associated derangements πi, i = 1, 2, are conjugate in Sn.
Then the πi have the same cycle types and according to Lemma 2.2 the num-
ber of discontinuities of fk1 and fk2 , k ≥ 1, coincide. Therefore functions of
type I, the associated derangements are conjugate in Sn, show similar behav-
ior. From Lemma 2.2 we deduce that the number of discontinuities of fk can
be described in terms of the cycle type of πf . Thus the behavior of f depends
only on the conjugacy class of πf .

https://oeis.org/A000793
https://oeis.org/A123131
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Table 2. Values of g(n) and g̃(n)

n g(n) g̃(n)

2 2 2
3 3 3
4 4 4
5 6 6
6 6 6
7 12 12
8 15 15
9 20 20
10 30 30
11 30 30
12 60 60
13 60 42
102 446 185 740 446 185 740
103 446 185 740 314 954 640
104 446 185 740 446 185 740

Table 3. Values of pn and p̃n

n dn p̃n pn
0 1 1 1
1 0 0 1
2 1 1 2
3 2 1 3
4 9 2 5
5 44 2 7
6 265 4 11
7 1 854 4 15
8 14 833 7 22
9 133 496 8 30
10 1 334 961 12 42
11 14 684 570 14 56
12 12 176 214 841 21 77

Cycle types of derangements in Sn correspond to partitions of the integer
n having no parts of size 1. A partition of n is a sequence α = (α1, . . . , αh) of
integers α1 ≥ . . . ≥ αh ≥ 1 with α1 + · · ·+ αh = n.

E.g., the partitions of n = 8 with no parts of size 1 are 8 = 6+2 = 5+3 =
4 + 4 = 4 + 2 + 2 = 3 + 3 + 2 = 2 + 2 + 2 + 2. These are 7 different types.

Given a positive integer n the set of orders of functions of type I having
n discontinuities is finite. It is a subset of {2, . . . , g̃(n)}. E.g., for n = 1 it is
the empty set, for n = 8 it is {8, 6, 15, 4, 2}. There are no functions of type I
with n removable discontinuities such that ord(f) > g̃(n). E.g., there are no
functions with 2 removable discontinuities such that f3 is continuous.

Considering just conjugacy classes reduces the combinatorial complexity.
The numbers pn of all partitions of n, and p̃n, the partition numbers without 1,
can be found in the OEIS as A002865 and A000041, see Table 3 for some
values.

There are no functions of type I with exactly one removable discontinuity.
The iterates fk have at most as many discontinuities as f .

3. Functions of type II

Now we consider bijective functions f : [0, n]→ [0, n], n ≥ 2, such that for
each i ∈ n there exists one j ∈ n such that

f(t) = t− (i− 1) + (j − 1) = t− i+ j, t ∈ [i− 1, i),

https://oeis.org/A002865
https://oeis.org/A000041
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and f(n) = n. Therefore, f is continuous in each interval Ii := [i − 1, i) (in
i− 1 continuous from the right), i ∈ n. Discontinuities can appear only in the
positions 1, . . . , n.

Since f is bijective, it defines a permutation π ∈ Sn given by

π(i) = j ⇐⇒ f(Ii) = Ij .

For example f =
��

��
��

��

��

��s
s s

s

s sc c
c

c cs
defines π =

(
1 2 3 4 5 6
4 2 3 1 6 5

)
.

Lemma 3.1. If f is a function of type II and π ∈ Sn is obtained from f ,
then:
1. f(t) = π(i) + t− i, t ∈ Ii, i ∈ n.
2. f is continuous in i, iff π(i+ 1) = π(i) + 1, 1 ≤ i < n.
3. f is continuous in n, iff π(n) = n.
4. fk is continuous, iff fk = id.
5. fk(t) = πk(i) + t− i, t ∈ Ii, i ∈ n.
6. fk is continuous, iff πk = id.

An element i ∈ n − 1 is called a succession (or a small ascent) of π, iff
π(i + 1) = π(i) + 1. The f above has exactly one succession namely 2. The
number of discontinuities of f among {1, . . . , n − 1} is the number of i-s
which are not successions of π. A permutation π without successions satisfying
π(n) < n defines a function with n discontinuities. These are the functions
of type II having the maximum number of discontinuities. E.g., π = (1, n)(2,
n− 1) . . . or σ = (1, n, 2, n− 1, . . .) lead to n discontinuities of f , n ≥ 2.

π =
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��
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��

��

��

s s s s s s

c c c c c c

s
σ =
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s s

c c c
c

c c
s

for n = 6.

Hence, we try to enumerate permutations without successions. Let an be
the number of permutations in Sn having no successions and bn the number of
permutations in Sn having exactly one succession, then it is easy to prove that
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a1 = 1, a2 = 1, b1 = 0, b2 = 1,

and

an = (n− 1)an−1 + bn−1, n ≥ 2,

bn = (n− 1)an−1, n ≥ 2,

thus

an = (n− 1)an−1 + (n− 2)an−2 = bn + bn−1, n ≥ 3,

bn = (n− 1)(bn−1 + bn−2), n ≥ 3.

Consequently, bn = dn, n ≥ 1, the number of derangements of n objects.
For an see A000255 in the OEIS.
Let cn be the number of permutations π in Sn having no successions and

satisfying π(n) = n. Then

cn = an−1 − cn−1, n ≥ 2.

Therefore an−1 = cn + cn−1, n ≥ 2, and since c2 = b1 and c3 = b2 we deduce
cn = bn−1, n ≥ 2.

The number of permutations π in Sn having no successions and satisfying
π(n) < n is therefore

an − cn = an − bn−1 = bn = (n− 1)an−1, n ≥ 2.

Corollary 3.2. The number of functions f : [0, n] → [0, n], n ≥ 2, of
type II having n discontinuities (in the points 1, . . . , n) is (n− 1)an−1 = bn =
dn the number of derangements.

It is also possible to enumerate permutations with prescribed number of
successions (cf. [1, section 5.4]). Let an,k be the number of permutations π ∈
Sn having exactly k successions, 0 ≤ k < n, then an,0 = an and an,1 = bn and

an,k =
(n− 1)!

k!

n−k−1∑
j=0

(−1)j n− k − j
j!

=

(
n− 1

k

)
an−k, 0 ≤ k ≤ n− 1.

Therefore,

n! =

n−1∑
k=0

an,k =

n−1∑
k=0

(
n− 1

k

)
an−k, n ≥ 1,

https://oeis.org/A000255
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Table 4. Values of an,k

n an,0 an,1 an,2 an,3 an,4 an,5 an,6 an,7 an,8 an,9

3 3 2 1
4 11 9 3 1
5 53 44 18 4 1
6 309 265 110 30 5 1
7 2119 1854 795 220 45 6 1
8 16687 14833 6489 1855 385 63 7 1
9 148329 133496 59332 17304 3710 616 84 8 1
10 1468457 1334961 600732 177996 38934 6678 924 108 9 1

and by binomial inversion we obtain

an =

n−1∑
k=0

(−1)n−1−k
(
n− 1

k

)
(k + 1)!, n ≥ 1.

Some values of an,k are collected in Table 4. See also A123513 in the OEIS.

E.g., there is only one permutation π ∈ Sn having n−1 successions, namely
π = id, thus an,n−1 = 1. Since an,n−2 = n−1, the permutations πj , j ∈ n−1,
n ≥ 2, π = (1, . . . , n), turn out to be the only permutations in Sn having
exactly n− 2 successions.

In what follows we construct functions of type II with certain properties.

Consider as above a cycle π = (1, 2, . . . , k) =

(
1 2 . . . k − 1 k
2 3 . . . k 1

)
of length

k ≥ 2 with k − 2 successions. Then for 1 ≤ j < k

πj =

(
1 2 . . . k − j k − j + 1 . . . k

j + 1 j + 2 . . . k 1 . . . j

)
has {

k − 2 successions if k 6 | j,
k − 1 successions if k | j.

Let f1,k : [0, k] → [0, k] be the function of type II determined by this π, then
the iterates f j1,k have {

2 discontinuities if k 6 | j,
0 discontinuities if k | j,

https://oeis.org/A123513
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where the two discontinuities of f j1,k occur in k−(j mod k) and k. By j mod k

we indicate the unique element i ∈ {0, . . . , k − 1} satisfying i ≡ j mod k.
The iterates f js,k of the functions fs,k : [0, sk] → [0, sk] corresponding to

the product of s cycles of length k

(1, 2, . . . , k)(k + 1, k + 2, . . . , 2k) · · · ((s− 1)k + 1, . . . , sk)

have {
2s discontinuities if k 6 | j,
0 discontinuities if k | j,

where the 2s discontinuities of f js,k occur in rk − (j mod k) and rk for
1 ≤ r ≤ s.

Similarly we consider the iterates gjs,k of the functions gs,k : [0, sk + 1] →
[0, sk + 1] corresponding to the product of s cycles and one fixed point

(1)(2, 3, . . . , k + 1)(k + 2, k + 3, . . . , 2k + 1) · · · ((s− 1)k + 2, . . . , sk + 1).

They have {
2s+ 1 discontinuities if k 6 | j,
0 discontinuities if k | j,

where the 2s+1 discontinuities of gjs,k occur in 1 and rk+1− (j mod k) and
rk + 1 for 1 ≤ r ≤ s.

Theorem 3.3. For any n ≥ 2 and k ≥ 2 the iterates f jn/2,k (for even n)
or gj(n−1)/2,k (for odd n) of the functions fn/2,k, or g(n−1)/2,k have{

n discontinuities if k 6 | j,
0 discontinuities if k | j.

Now we define a concatenation of functions of type II. Given two functions
f : [0, n] → [0, n] and g : [0,m] → [0,m] of type II, then f • g : [0, n +m] →
[0, n+m] is defined by

(f • g)(t) =

{
f(t) if t ∈ [0, n),

n+ g(t− n) if t ∈ [n, n+m].



60 Harald Fripertinger

Since f and g are bijective and f(n) = n, the concatenation f • g is bijective,
and f • g is of type II. If, furthermore, f is continuous in n and g(0) = 0, then
f • g is continuous in n since g is continuous from the right side in 0. The
function f • g is not continuous in n, iff f is not continuous in n or g(0) 6= 0.

Theorem 3.4. Consider f and g of type II having r respectively s discon-
tinuities. Then the number of discontinuities of f • g is{

r + s+ 1 if f is continuous in n and g(0) 6= 0,

r + s else.

Remark 3.5.
1. Actually fs,k = fs−1,k • f1,k and gs,k = gs−1,k • f1,k for s > 1.
2. Even though f1,k(0) 6= 0 the function fs,k has 2s (and gs,k has 2s + 1)

discontinuities since fs−1,k and gs−1,k are not continuous at the end of
their domains.

3. The functions gs,k satisfy gs,k(0) = 0, thus the j-th iterate of the concate-
nation of gs1,k1 • . . . • gsr,kr has

r∑
i=1, ki 6 | j

(2si + 1)

discontinuities. Concatenation of gs,k does not introduce new discontinuities.
4. Concatenation of the functions fs,k is more complicated, since fs,k(0) =

2 6= 0, and f js,k(0) = 0 whenever j is a multiple of k.

E.g., the numbers of discontinuities of (f1,2 • f1,3)j and (f1,3 • f1,2)j are

j 1 2 3 4 5 6
number of discontinuities of (f1,2 • f1,3)j 4 3 2 3 4 0
number of discontinuities of (f1,3 • f1,2)j 4 2 3 2 4 0

In the next examples we restrict ourselves to functions which are contin-
uous in 0, the left end of their domains. We already know the functions gs,k
with this property whose iterates have either 2s + 1 or no discontinuities.
Hence we are looking for functions whose iterates either have an even number
` > 0 or 0 discontinuities.
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If ` is even, ` ≥ 6, then ` = (` − 3) + 3, and the iterates f j of f =
g(`−4)/2,k • g1,k have {

` discontinuities if k 6 | j,
0 discontinuities if k | j.

In other words for all j ≥ 0 the j-th iterate of the function g(`−4)/2,k •g1,k has
the same number of discontinuities as the j-th iterate of f`/2,k, but (g(`−4)/2,k•
g1,k)(0) = 0.

What about functions with 2 or 4 discontinuities among 1, . . . , n − 1? It
is easy to see that there is no function f : [0, n] → [0, n] of type II such that
f(0) = 0 having exactly two discontinuities. These functions have at least
three discontinuities. An example for n = 5 is given by

��t d�
�
�
��

��
t t

d
d
t

Concerning permutations with exactly four discontinuities we obtain: The
permutation π = (1)(2, 4)(3) has order 2 and yields 4 discontinuities.

There is no permutation of order 3 which yields 4 discontinuities.
A family (πk)k≥2 of permutations of order ord(πk) = 2k+1, k ≥ 2, which

yields functions f having exactly 4 discontinuities is given by
π2 = (1)(2, 6, 3, 4, 5), π3 = (1)(2, 8, 3, 4, 5, 6, 7), and πk = (1)(2, 2k + 2, 3, 4,
. . . , 2k + 1).

��

��
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�
�
�
�
�

�
�
�

t

t

t
t

t

d

d d

d

A new phenomenon occurs with these functions. There exist iterates of f
having more discontinuities than f itself. The number of discontinuities of the
iterates f j , f corresponding to π3, are:
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j 1 2 3, 4 5 6 7

number of discontinuities of f j 4 6 7 6 4 0

Probably these results can be generalized for arbitrary k.
A family (πk)k≥2 of permutations of order ord(πk) = 2k+1, k ≥ 2, which

yields functions f having exactly 4 discontinuities is given by
π2 = (1)(2, 4, 3, 5), π3 = (1)(2, 5, 3, 6, 4, 7), and πk = (1)(2, k + 2, 3, k + 3,
. . . , k + 1, 2k + 1).
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��

�
�
�

��t

t
t t

t

d

d
d

d
The number of discontinuities of the iterates f j , f corresponding to π3, are:

j 1 2, 3, 4 5 6

number of discontinuities of f j 4 5 4 0

Probably these results can be generalized for arbitrary k.
For ` ∈ {3, 5, 6, 7, . . .} and k ≥ 2 let

h`,k :=

{
g(`−1)/2,k if ` ≡ 1 mod 2,

g(`−4)/2,k • g1,k if ` ≡ 0 mod 2.

From Theorem 3.4 we deduce

Theorem 3.6. For ` ∈ {3, 5, 6, 7, . . .} and k ≥ 2 the functions h`,k : [0, n]→
[0, n] are of type II. They satisfy h`,k(0) = 0 and their iterates hj`,k have{

` discontinuities if k 6 | j,
0 discontinuities if k | j.

Then the j-th iterate of the concatenation h`1,k1•. . .•h`r,kr , `i ∈ {3, 5, 6, 7, . . .},
ki ≥ 2, 1 ≤ i ≤ r, has exactly

r∑
i=1, ki 6 | j

`i discontinuities.
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There are no functions f of type II with exactly one discontinuity, or with
exactly two discontinuities satisfying f(0) = 0.

As a generalization of functions of type I and type II we introduce

4. Functions of type III

A bijective function f : [0, n]→ [0, n] is a function of type III, iff f permutes
the integers {0, 1, . . . , n}, and for each i ∈ n there exists exactly one j ∈ n
such that either

f(t) = t− (i− 1) + (j − 1) = t− i+ j, t ∈ (i− 1, i),

or

f(t) = j − (t− (i− 1)) = j + i− 1− t, t ∈ (i− 1, i).

This means that f permutes the open intervals Ii = (i − 1, i), i ∈ n. In the
first case f is strictly increasing on Ii, in the second case strictly decreasing
on Ii.

The restriction of f to {0, . . . , n} defines a permutation π. Let λ ∈ Sn be
the induced permutation f(Ii) = Iλ(i), i ∈ n. Moreover, define ε : n → {±1}
by ε(i) = 1, iff f is increasing on Iλ−1(i). E.g.,

d
d

d
d

��

@@

@
@
@

��
t

t
t

t t

td d
d d

ε(1)

ε(2)

ε(3)

ε(4)

ε(5)

λ(1)λ(2)λ(3)λ(4)λ(5)

π(0)π(1)π(2)π(3)π(4)π(5)

π(0) = 3
π(1) = 0 λ(1) = 1 ε(1) = 1
π(2) = 2 λ(2) = 2 ε(2) = −1
π(3) = 4 λ(3) = 5 ε(3) = 1
π(4) = 5 λ(4) = 4 ε(4) = −1
π(5) = 1 λ(5) = 3 ε(5) = −1

A function f of type III is uniquely determined by (π, (ε, λ)), π ∈ Sn+1,
ε ∈ {±1}n, λ ∈ Sn, since

f(t) = λ(i)− 1

2
+ ε(λ(i))

(
t− i+ 1

2

)
, t ∈ Ii, i ∈ n,

and f(j) = π(j), j ∈ {0, . . . , n}. The value ε(λ(i)) indicates whether f is
increasing or decreasing on the interval Ii, i ∈ n. We indicate this by f ↔
(π, (ε, λ)).



64 Harald Fripertinger

The function f is continuous in i ∈ n−1, iff either ε(λ(i)) = ε(λ(i+1)) = 1,
λ(i+ 1) = λ(i) + 1, and π(i) = λ(i), or ε(λ(i)) = ε(λ(i+ 1)) = −1, λ(i+ 1) =
λ(i)− 1, and π(i) = λ(i+ 1).

f is continuous in 0, iff either ε(λ(1)) = 1 and π(0) = λ(1)−1 or ε(λ(1)) =
−1 and π(0) = λ(1). In a similar way the continuity of f in n can be described.
There are two possibilities that the k-th iterate of a function f of type III is
continuous, either fk = id or fk = n− id.

Now we show that the pairs (ε, λ) are elements of a wreath product. This
is a particular form of a semidirect product (cf. [3, section 4.1] or [4, p. 37]).

Theorem 4.1 (Structure Theorem). Consider two functions of type III,
f ↔ (π, (ε, λ)) and f ′ ↔ (π′, (ε′, λ′)). Then their composition yields

f ◦ f ′ ↔ (π ◦ π′, (εε′λ, λ ◦ λ′))

where

εε′λ(i) := ε(i)ε′(λ−1(i)), i ∈ n.

Thus the set of all functions of type III is the direct product

Sn+1 × ({±1} o Sn)

where the factor on the right side is a wreath product

{±1} o Sn = {(ε, λ) | ε ∈ {±1}n, λ ∈ Sn}

of order n! · 2n with (ε, λ)(ε′, λ′) = (εε′λ, λ ◦ λ′).

Consequently, the number of functions of type III on [0, n] is n!(n+1)!2n,
see Table 5. Functions of type I or type II are particular cases of these func-
tions.

With each cycle of λ =
∏
ν(jν , λ(jν), . . . , λ

lν−1(jν)) we associate the ν-th
cycle product hν(ε, λ) = ε(jν)ε(λ

−1(jν)) · · · ε(λ−lν+1(jν)) = εελ · · · ελlν−1(jν).
This value indicates the direction of f lν on the intervals Ij for j ∈ {jν , λ(jν),
. . . , λlν−1(jν)}. Then, fk = id, iff (πk, (ε, λ)k) = (id, (1, id)), iff πk = id,
λk = id, (thus lν | k for all ν) and h

k/lν
ν (ε, λ) = 1 for all ν. Thus k is a

multiple of ord(π) in Sn+1 and of ord(ε, λ) in {±1} o Sn. The latter is either
ord(λ) or 2ord(λ).

The smallest positive k with these properties is the order of f .
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Table 5. Number of functions
of type III on [0, n]

n n!(n+ 1)!2n

0 1
1 4
2 48
3 1152
4 46080
5 2764800
6 232243200
7 26011238400
8 3745618329600
9 674211299328000
10 148326485852160000

Corollary 4.2. Let f ↔ (π, (ε, λ)) be a function of type III, then

ord(f) = lcm(ord(π), ord(ε, λ)).

In the situation of functions of type III it is possible to find decreasing
continuous iterates. They must be of the form n− id. Let f ↔ (π, (ε, λ)) be a
function of type III, then (πk, (λk, ε̃))↔ fk = n−id, iff πk = (0, n)(1, n−1) . . .,
λk = (1, n)(2, n − 1) . . ., and ε̃ = −1. Thus π and λ are roots of order k of
permutations of cycle type{

(0, n+1
2 ) and (1, n−12 ) resp. if n+ 1 ≡ 0 mod 2,

(1, n2 ) and (0, n2 ) resp. if n+ 1 ≡ 1 mod 2.

They can be enumerated and also constructed.

E.g., f =

�
�
�

@@

@@

�
�
�

t

t

d
dt t
t

t t
d

d
satisfies f3 = 6− id.

There exist also functions of type III with exactly one discontinuity. We
distinguish four different forms:

t
t

��

@@d t or t
@@

��dt
t
or t d��

@@t
t

or

t
t@@

��
d t.



66 Harald Fripertinger

Actually the discontinuity need not be exactly in 1, it can be in any position
n1 so that 0 ≤ n1 < n. In other words the interval [0, n] can be partitioned
into two intervals [0, n1] and [n1, n] such that f is strictly monotonic on both
intervals. Let n2 = n− n1.

A function of the first form is the concatenation of idn1 and n2− idn2 both
of which are continuous, and the discontinuity disappears with the second
iteration.

Also the discontinuity of functions of the second form disappears with the
second iteration.

The behaviour of functions of the third and forth form can be studied.
There exist functions of type III with exactly two discontinuities in the

interior of the interval. They can be constructed from the four different forms
of functions with exactly one discontinuity. E.g., the functions

��

@@

��

t
t dd t

t
t

d t
��

@@

��t d
t

have exactly two discontinuities in the interior of the interval and are of or-
der 2. They correspond to the first and second form. The functionst

t d@@

��

@@

d t
t
@@

��

@@

t
d tt d

t
have exactly two discontinuities in the interior of the interval and are of order
2. They correspond to the third and fourth form. These examples again can
be generalized by partitioning the interval [0, n] into 3 parts [0, n1], [n1, n2],
[n2, n] with 0 < n1 < n2 < n ∈ N.

Finally we study some relations between functions of type III and iterative
roots of the identity. Let k be the order of a function f of type III. Then
fk = id, and f is an iterative root of the identity. By applying a continuous,
bijective, and increasing function ϕ we obtain

Theorem 4.3. Let J be a compact interval, ϕ : J → [0, n] be continuous,
bijective, and increasing, and f : [0, n] → [0, n] be of type III with r disconti-
nuities and ord(f) = k, then

F := ϕ−1 ◦ f ◦ ϕ : J → J

is bijective, has r discontinuities, and satisfies F k = idJ , thus F is an iterative
root of the identity of order k.
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Conversely, consider an iterative root F : J → J of the identity of order
k on a compact interval J with finitely many discontinuities. We will prove
that it is always possible to find some n ∈ N, a continuous, bijective, and
increasing function ϕ : J → [0, n] and a function f : [0, n] → [0, n] of type III
so that F = ϕ−1 ◦ f ◦ ϕ.

It is obvious that if J is a compact interval and F : J → J is a bijective
mapping with finitely many discontinuities, then they must be removable or
jump discontinuities.

In general the integer n is not uniquely determined, so we are looking for
the smallest n possible. Assume that F k = id and F has r discontinuities
ξ1, . . . , ξr ∈ J = [a, b]. Consider the union of orbits

U = {a, b} ∪
r⋃
j=1

{F i(ξj) | 1 ≤ i ≤ k},

then U is finite and we determine n by

n = |U | − 1.

This particular n will be called n(F ). The n+1 elements of U will be labeled by
a = x0 < . . . < xn = b. Since F (U) = U we have F (xi) ∈ U for all 0 ≤ i ≤ n,
thus F is a permutation of U . Let Ji be the open interval (xi−1, xi), i ∈ n,
then

[a, b] = U ∪ J1 ∪ · · · ∪ Jn.

For all i ∈ n it is obvious that F is continuous on Ji, and there exists some
j ∈ n so that F (Ji) = Jj , thus F permutes the intervals Ji.

The function ϕ will be constructed in two steps: First we determine some
ϕ : J → [0, n] so that ϕ(Ji) = (i − 1, i) for i ∈ n. Let ϕ(xi) := i, i ∈ n. For
x ∈ Ji = (xi−1, xi) let

ϕ(x) := i− 1 +
x− xi−1
xi − xi−1

,

then ϕ is continuous in Ji, and limx→x+
i−1

ϕ(x) = i − 1 = ϕ(xi−1) and
limx→x−

i
ϕ(x) = i = ϕ(xi). Therefore, ϕ is continuous on J . Moreover, ϕ is

strictly increasing and bijective. If F̃ denotes the function ϕ◦F ◦ϕ−1 : [0, n]→
[0, n], then
• F̃ is bijective,
• F̃ j = id[0,n], iff F j = idJ ,
• F̃ is an iterative root of the identity of order k,
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• F̃ has discontinuities in ϕ(ξi), i ∈ r,
• F̃ (i) ∈ {0, . . . , n}, i ∈ {0, . . . , n}, F̃ permutes these elements,
• F̃ is continuous on Ii = (i− 1, i), i ∈ n,
• F̃ is a permutation of the intervals Ii, i ∈ n,
• F̃ is increasing on Ii, iff F is increasing on Ji, i ∈ n.

In a second step we try to find some ψ : [0, n]→ [0, n] so that ψ ◦ F̃ ◦ ψ−1
is affine on each interval Ii = (i− 1, i), i ∈ n.

Lemma 4.4. Assume that f := F̃ |Ii is a mapping Ii → Ij for i 6= j,
i, j ∈ n.

If f is strictly increasing, then there exists some ψj : Ij → Ij bijective and
increasing, so that ψj(f(x)) = j + x− i, x ∈ Ii.

If f is strictly decreasing, then there exists some ψj : Ij → Ij bijective and
increasing, so that ψj(f(x)) = j − x+ i− 1, x ∈ Ii.

Proof. 1. Let ψj(x) = j + f−1(x) − i, for x ∈ Ij , then ψj is a bijective
and increasing mapping Ij → Ij , and ψj(f(x)) = j+f−1(f(x))− i = j+x− i,
x ∈ Ii.

2. Let ψj(x) = j − f−1(x) + i − 1, for x ∈ Ij , then ψj is a bijective and
increasing mapping Ij → Ij , and ψj(f(x)) = j−f−1(f(x))+ i−1, x ∈ Ii. �

Let ψj(x) = x for x 6∈ Ij , then ψj is bijective and increasing on [0, n].
We had just seen that F̃ is a permutation of the intervals Ii, i ∈ n. Consider

a cycle Ii1 → Ii2 → . . .→ Ii` → Ii1 of length ` ≥ 1. Then F `(Iij ) = Iij , j ∈ `.
Composition of two increasing or two decreasing functions yields an in-

creasing function, composition of one increasing and one decreasing function
yields a decreasing function. Therefore, if F̃ is decreasing on an even num-
ber of intervals in this cycle, then F̃ ` is increasing on all Iij , otherwise F̃ ` is
decreasing on all Iij .

Since ψj restricted to Ii is a bijective mapping Ii → Ii, i ∈ n, the restriction
ψj ◦ F̃ ◦ ψ−1j to Ii involves only F̃ |Ii .

Continuous iterative roots of the identity on an interval I are continuous
solutions of the Babbage equation. According to [5, Theorem 11.7.1] they are
either the identity on I or they are strictly decreasing involutions. The graph
of a strictly decreasing involution of an interval is symmetric with respect to
the line {(x, x) | x ∈ R} (cf. [5, Theorem 11.7.2]).

In the first case we assume that F̃ contains a cycle of intervals of length
` with an even number of decreasing functions in this cycle, then F̃ ` is con-
tinuous and strictly increasing on each of these intervals which means that
F̃ `|Iij = id|Iij for all j ∈ `.

In the case ` = 1 the function F̃ is already the identity on Ii1 . Assume that
` ≥ 2. Then the function F̃ |Ii1 maps Ii1 → Ii2 . According to Lemma 4.4 there
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exists a bijective and increasing mapping ψi2 on [0, n] so that ψi2 ◦ F̃ |Ii1 is
affine, i.e. it is either x 7→ i2+x−i1 or x 7→ i2−1+i1−x. Then also ψi2◦F̃ ◦ψ−1i2
is affine on Ii1 since ψ−1i2 does not influence the function restricted to Ii1 .

If ` > 2, then the function ψi2 ◦ F̃ ◦ ψ−1i2 |Ii2 maps Ii2 → Ii3 . According
to Lemma 4.4 there exists a bijective and increasing mapping ψi3 on [0, n] so
that ψi3 ◦ ψi2 ◦ F̃ ◦ ψ−1i2 is affine on Ii2 . Then also ψi3 ◦ ψi2 ◦ F̃ ◦ ψ−1i2 ◦ ψ

−1
i3

is
affine on Iij , j = 1, 2.

Continuing in the same way, the function ψi`−1
◦ · · · ◦ ψi2 ◦ F̃ ◦ ψ−1i2 ◦ · · · ◦

ψ−1i`−1
|Ii`−1

maps Ii`−1
→ Ii` . There exists a bijective and increasing mapping

ψi` on [0, n] so that ψi` ◦ψi`−1
◦ · · · ◦ψi2 ◦ F̃ ◦ψ−1i2 ◦ · · · ◦ψ

−1
i`−1

is affine on Ii`−1
.

Then also ψi` ◦ · · · ◦ ψi2 ◦ F̃ ◦ ψ
−1
i2
◦ · · · ◦ ψ−1i` , is affine on Iij , j ∈ `− 1.

The mapping ψ = ψi` ◦ · · · ◦ ψi2 is bijective and increasing on [0, n], ψ ◦
F̃ ◦ ψ−1|Iij is affine, j ∈ `− 1, and ψ(x) = x for x ∈ Ii1 .

We have id|Ii1 = F̃ `|Ii1 = F̃ |Ii` ◦ · · · ◦ F̃ |Ii1 . Therefore id|Ii1 = ψ ◦ id ◦
ψ−1|Ii1 = ψ◦F̃ `◦ψ−1|Ii1 = (ψ◦F̃ ◦ψ−1)`|Ii1 = (ψ◦F̃ ◦ψ−1)◦

[
(ψ◦F̃ ◦ψ−1)◦· · ·◦

(ψ◦F̃ ◦ψ−1)
] ∣∣∣
Ii1

= (ψ◦F̃ ◦ψ−1)|Ii` ◦
[
(ψ◦F̃ ◦ψ−1)|Ii`−1

◦· · ·◦(ψ◦F̃ ◦ψ−1)|Ii1
]
.

The term between [ and ] is a composition of affine functions, thus it is affine,
whence also ψ ◦ F̃ ◦ψ−1|Ii` is affine. Consequently ψ ◦ F̃ ◦ψ−1 is affine on Iij
for each j ∈ `.

In the second case assume that F̃ contains a cycle of intervals of length `
with an odd number of decreasing functions in this cycle, then F̃ ` restricted
to Iij is a decreasing involution on Iij , j ∈ `, but it need not be affine on
these intervals. Then there exists a bijective and increasing function ψ̃ so
that (ψ̃ ◦ F̃ ` ◦ ψ̃−1)|Iij = (ψ̃ ◦ F̃ ◦ ψ̃−1)`|Iij is also affine, i.e. of the form
x 7→ 2ij − 1− x, x ∈ Iij for each j ∈ `. Without loss of generality we assume
that F̃ `|Iij is affine for each j ∈ `.

Similar to the first case, there exists ψ = ψi` ◦ . . .◦ψi2 so that ψ ◦ F̃ ◦ψ|Iij
is affine on Iij for j ∈ `− 1. By construction ψ(x) = x for x ∈ Ii1 .

Therefore we have ψ ◦ F̃ ` ◦ψ−1|Ii1 = ψ(2i1 − 1−ψ−1(x)) = 2i1 − 1− x =

ψ ◦ F̃ ◦ ψ−1|Ii` ◦
[
ψ ◦ F̃ ◦ ψ−1|Ii`−1

◦ · · · ◦ ψ ◦ F̃ ◦ ψ−1|Ii1
]
(x). The term

between [ and ] is a composition of affine functions, thus it is affine, whence
also ψ ◦ F̃ |Ii` ◦ ψ

−1|Ii` is affine. Consequently, ψ ◦ F̃ |Iij ◦ ψ
−1 is affine on Iij

for each j ∈ `.
This finishes the proof of

Theorem 4.5. Let J be a compact interval, F : J → J an iterative root
of the identity of order k with finitely many discontinuities. Then there exists
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some positive integer n and a continuous, bijective, and increasing function
ϕ : J → [0, n] so that f = ϕ◦F ◦ϕ−1 is a function of type III with ord(f) = k.

Two bijective functions F1 : J1 → J1 and F2 : J2 → J2 defined on compact
intervals J1 and J2 are considered to be equivalent

F1 ∼ F2

iff there exists a bijective increasing function ϕ : J1 → J2 so that

F2 = ϕ ◦ F1 ◦ ϕ−1.

It is easy to prove that for all bijective functions Fi : Ji → Ji, 1 ≤ i ≤ 3, we
have F1 ∼ F1, F1 ∼ F2 iff F2 ∼ F1, and if F1 ∼ F2 and F2 ∼ F3 then F1 ∼ F3.

Theorem 4.6. Consider f1, f2 functions of type III corresponding to ele-
ments of Sn+1 × ({±1} o Sn), with n = n(f1) = n(f2). Then

f1 ∼ f2 ⇔ f1 = f2.

Theorem 4.7. Consider an iterative root F : J → J of the identity of
order k on a compact interval J with finitely many discontinuities. Let n =
n(F ). Then there exists exactly one function f ∈ Sn+1×({±1}oSn) of type III
so that

F ∼ f.

Consider f ∈ Sn+1 × ({±1} o Sn) with m = n(f) < n. Then there exists
f ′ ∈ Sm+1 × ({±1} o Sm) so that f ∼ f ′. It is possible that there exists
f ′′ ∈ Sn+1 × ({±1} o Sn), f ′′ 6= f , so that f ∼ f ′′.

How many functions f of type III exist with n = n(f)? Their number is
the number of non-equivalent functions f of type III with n = n(f). So far
the author does not know an explicit formula in order to enumerate them.
For small values of n it is possible to check all functions of type III. Table 6
contains numerical data (computed with SYMMETRICA [7]) comparing the
numbers of all functions of type III for small n, with the numbers of functions
with n(f) < n and n(f) = n.

Consider e.g. functions of type III which are of the form
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@
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@
@
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t
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Table 6. Comparison of numbers of functions of type III
n n!(n+ 1)!2n n(f) < n n(f) = n

0 1
1 4
2 48 4 44
3 1152 40 1112
4 46080 892 45188
5 2764800 37708 2727092
6 232243200 2337808 229905392
7 26011238400 201311920 25809926480
8 3745618329600 22951808356 3722666521244
9 674211299328000
10 148326485852160000

Here we have a permutation λ for n = 7, where neither 1, 3 nor 6 occur in
the orbit of a discontinuity of f since f(1) = 3, f(3) = 6 and f(6) = 1. Thus
these values could be omitted in order to get a function g on n = 4.

@@

@@

��

��

Depending on f(i) ∈ {0, 2, 4, 5, 7} for i ∈ {0, 2, 4, 5, 7} there are (8 − 3)!
functions of this particular form with n(f) = 4.

A method for constructing functions of type III with n(f) < n is the
following:

Divide all intervals (i − 1, i) belonging to a cycle of length ` of λ into k
intervals of length 1/k, and stretch each of these shorter intervals to length 1,
then we obtain k ·` intervals instead of ` intervals. Since the original function is
continuous in (i− 1, i) the “stretched function” is continuous on k consecutive
intervals. E.g. from a function f with n(f) = n = 3, where λ = (1, 2, 3), and
ε = 1, we obtain for k = 1, k = 2, k = 3, functions of type III with n = 3,
n = 6, n = 9.
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