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Abstract. The paper consists of two parts. At first, assuming that (Ω,A, P )
is a probability space and (X, %) is a complete and separable metric space with
the σ-algebra B of all its Borel subsets we consider the set Rc of all B ⊗ A-
measurable and contractive in mean functions f : X × Ω → X with finite
integral

∫
Ω % (f(x, ω), x)P (dω) for x ∈ X, the weak limit πf of the sequence

of iterates of f ∈ Rc, and investigate continuity-like property of the function
f 7→ πf , f ∈ Rc, and Lipschitz solutions ϕ that take values in a separable
Banach space of the equation

ϕ(x) =

∫
Ω
ϕ (f(x, ω))P (dω) + F (x).

Next, assuming that X is a real separable Hilbert space, Λ: X → X is linear
and continuous with ‖Λ‖ < 1, and µ is a probability Borel measure on X with
finite first moment we examine continuous at zero solutions ϕ : X → C of the
equation

ϕ(x) = µ̂(x)ϕ(Λx)

which characterizes the limit distribution πf for some special f ∈ Rc.
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Fix a probability space (Ω,A, P ) and a complete and separable metric
space (X, %). Let B denote the σ-algebra of all Borel subsets of X.

We say that f : X × Ω → X is a random-valued function (an rv-function
for short) if it is measurable with respect to the product σ-algebra B⊗A. The
iterates of such an rv-function are given by

f0(x, ω1, ω2, . . .) = x, fn(x, ω1, ω2, . . .) = f(fn−1(x, ω1, ω2, . . .), ωn)

for x from X and (ω1, ω2, . . .) from Ω∞ defined as ΩN. Note that fn : X ×
Ω∞ → X is an rv-function on the product probability space (Ω∞,A∞, P∞).
More exactly, the n-th iterate fn is B ⊗ An-measurable, where An denotes
the σ-algebra of all sets of the form

{(ω1, ω2, . . .) ∈ Ω∞ : (ω1, . . . , ωn) ∈ A}

with A from the product σ-algebra An. (See [7, Sec. 1.4], [5].)
A simple criterion for the convergence in law of (fn(x, ·))n∈N to a random

variable independent of x ∈ X was proved in [1] and applied to the equation

(1) ϕ(x) =

∫
Ω

ϕ (f(x, ω))P (dω) + F (x)

with ϕ as the unknown function. This criterion reads.
(H) There exists a λ ∈ (0, 1) such that∫

Ω

% (f(x, ω), f(z, ω))P (dω) ≤ λ%(x, z) for x, z ∈ X

and

(2)
∫

Ω

% (f(x, ω), x)P (dω) <∞ for x ∈ X.

Thus, denoting by πfn(x, ·) the distribution of fn(x, ·), i.e.,

πfn(x,B) = P∞ (fn(x, ·) ∈ B) for n ∈ N ∪ {0}, x ∈ X and B ∈ B,

hypothesis (H) guarantees the existence of a probability Borel measure πf on
X such that

lim
n→∞

∫
X

u(z)πfn(x, dz) =

∫
X

u(z)πf (dz)
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for x ∈ X and for any continuous and bounded u : X → R; moreover, as
observed in [3] (see also [6]),

(3)
∫
X

%(x, z)πf (dz) <∞ for x ∈ X.

In [2] we considered continuity-like property of the function f 7→ πf . In [4]
we characterized the limit distribution πf via a functional equation for its
characteristic function for some special rv-functions in Hilbert spaces. In the
present paper we are strengthening the result of [2], apply it to equation (1)
and consider also the equation used for the above mentioned characterization
of the limit distribution.

1. Assuming that (Ω,A, P ) is a probability space and (X, %) is a complete
and separable metric space, consider the set Rc of all rv-functions f : X×Ω→
X such that∫

Ω

%(f(x, ω), f(z, ω))P (dω) ≤ λf%(x, z) for x, z ∈ X

with a λf ∈ [0, 1) and (2) holds. Put also

d(f, g) = sup
{∫

Ω

%(f(x, ω), g(x, ω))P (dω) : x ∈ X
}

for f, g ∈ Rc.

The theorem in [2] says that if f, g ∈ Rc, then

(4)
∣∣∣∣∫
X

udπf −
∫
X

udπg
∣∣∣∣ ≤ 1

1−min{λf , λg}
d(f, g)

for every non-expansive u : X → [−1, 1]. In fact the above inequality was
proved there for every non-expansive and bounded u : X → R. But if f ∈ Rc,
then (3) holds and so every Lipschitz function mapping X into a separable
Banach space is Bochner integrable with respect to πf . Therefore we can ask
whether (4) holds also for such a function. The theorem reads as follows.

Theorem 1. If f, g ∈ Rc, then

(5)
∥∥∥∥∫

X

udπf −
∫
X

udπg
∥∥∥∥ ≤ 1

1−min {λf , λg}
d(f, g)

for every non-expansive u mapping X into a separable Banach space.
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Proof. Let u be a non-expansive mapping of X into a separable Banach
space Y . To show that (5) holds we may assume that Y is a real space.

Fix y∗ ∈ Y ∗ such that ‖y∗‖ ≤ 1 and

(6)
∥∥∥∥∫

X

udπf −
∫
X

udπg
∥∥∥∥ = y∗

(∫
X

udπf −
∫
X

udπg
)
.

For every k ∈ N the function τk : R→ R given by τk(t) = −k for t ∈ (−∞,−k),
τk(t) = t for t ∈ [−k, k], τk(t) = k for t ∈ (k,∞) is non-expansive and
|τk(t)| ≤ |t| for t ∈ R. Consequently, since (4) holds for every non-expansive
and bounded u : X → R, for every k ∈ N we have

(7)
∣∣∣∣∫
X

τk ◦ y∗ ◦ udπf −
∫
X

τk ◦ y∗ ◦ udπg
∣∣∣∣ ≤ 1

1−min {λf , λg}
d(f, g)

and

|τk(y∗u(z))| ≤ ‖u(z)‖ for z ∈ X and k ∈ N.

Hence, applying the Lebesgue dominated convergence theorem and passing
with k to the limit in (7) we get∣∣∣∣∫

X

y∗ ◦ udπf −
∫
X

y∗ ◦ udπg
∣∣∣∣ ≤ 1

1−min{λf , λg}
d(f, g)

and (5) follows now from (6). �

The following example shows that both sides of (5) can be equal and non-
zero.

Example 1. If Ω = {0, 1}, P ({ω}) = 1/2 for ω ∈ {0, 1} and fα(x, ω) =
(x+ αω)/2 for x ∈ R, ω ∈ {0, 1} and α ∈ (0,∞), then fα ∈ Rc with λfα = 1

2
and (see [4, Example 1])

πfα(B) =
1

α
λ1(B ∩ [0, α]) for Borel B ⊂ R and α ∈ (0,∞),

where λ1 denotes the one-dimensional Lebesgue measure. Hence∫
R
udπfα =

1

α

∫ α

0

u(x)dx
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for every α ∈ (0,∞) and Lipschitz u : R→ R. In particular,∣∣∣∣∫
R
xπfα(dx)−

∫
R
xπfβ (dx)

∣∣∣∣ =
1

2
|α− β| = 1

1−min{λfα , λfβ}
d(fα, fβ)

for α, β ∈ (0,∞).

Denoting by ‖F‖L the smallest Lipschitz constant for a Lipschitz function
F we have the following corollary concerning Lipschitz solutions ϕ of (1).

Corollary 1. Assume F is a Lipschitz mapping of X into a separable
Banach space Y . If f, g ∈ Rc and

(8)
‖F‖L

1−min {λf , λg}
d(f, g) <

∥∥∥∥∫
X

Fdπg
∥∥∥∥ ,

then equation (1) has no Lipschitz solution ϕ : X → Y .

Proof. It follows from Theorem 1 and (8) that∥∥∥∥∫
X

Fdπf −
∫
X

Fdπg
∥∥∥∥ ≤ ‖F‖L

1−min {λf , λg}
d(f, g) <

∥∥∥∥∫
X

Fdπg
∥∥∥∥ ,

whence
∫
X
Fdπf 6= 0 and according to [4, Theorem 2.1] equation (1) has no

Lipschitz solution ϕ : X → Y . �

The following example shows that under the assumptions of Corollary 1
equation (1) may have a continuous solution. (Cf. [1, Example 4.2].)

Example 2. Assume p1, p2 are positive reals, p2 <
1
9 and p1 + p2 = 1,

reals L1, L2 satisfy

p1L
2
1 < 1, p1|L1|+ 3

√
p2(1− p1L2

1) < 1, |L2| =
√

(1− p1L2
1)/p2,

and a ∈ R\{0}. Define F : R→ R by

F (x) = −ap2(2L2x+ a).

Putting Ω = {1, 2} and P ({k}) = pk for k ∈ {1, 2} consider the rv-functions
f, g : R× Ω→ R given by

f(x, 1) = L1x, f(x, 2) = L2x+ a, g(x, k) = Lkx for k ∈ {1, 2}.
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Then f, g ∈ Rc with

λf = λg = p1|L1|+ p2|L2| = p1|L1|+
√
p2(1− p1L2

1) < 1,

and equation (1) takes the form

ϕ(x) = p1ϕ(L1x) + p2ϕ(L2x+ a) + F (x).

Since p1L
2
1 + p2L

2
2 = 1, the function x 7→ x2, x ∈ R, solves it. Moreover,

g(0, ω) = 0 for ω ∈ Ω, whence also gn(0, ω) = 0 for ω ∈ Ω∞ and n ∈ N.
Consequently, πg is the Dirac measure δ0 and∫

R
Fdπg = F (0) = −p2a

2.

Finally, ‖F‖L = 2p2|aL2|, d(f, g) = p2|a|, and so

‖F‖L
1−min{λf , λg}

d(f, g) =
2p2

2a
2|L2|

1−
(
p1|L1|+

√
p2(1− p1L2

1)
)< p2a

2 =

∣∣∣∣∫
R
Fdπg

∣∣∣∣ .
Consider also a special case of (1), viz.

(9) ϕ(x) =
1

n

n−1∑
k=0

ϕ

(
1

n
x+ ak

)
+ F (x).

Corollary 2. Assume n ≥ 2 is an integer and F is a Lipschitz map-
ping of R into a separable Banach space Y with

∫ 1

0
F (x)dx 6= 0. If reals

a0, . . . , an−1 satisfy

‖F‖L
n−1∑
k=0

∣∣∣∣kn − ak
∣∣∣∣ < (n− 1)

∥∥∥∥∫ 1

0

F (x)dx

∥∥∥∥ ,
then equation (9) has no Lipschitz solution ϕ : R→ Y .

Proof. Put Ω = {0, 1, . . . , n − 1}, P ({k}) = 1
n for k ∈ Ω and define

f, g : R× Ω→ R by

f(x, k) =
1

n
x+ ak, g(x, k) =

1

n
x+

k

n
.
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Clearly f, g ∈ Rc with λf = λg = 1
n and (see [4, Example 1]) πg(B) =

λ1(B ∩ [0, 1]) for Borel B ⊂ R. Moreover,

d(f, g) =
1

n

n−1∑
k=0

∣∣∣∣kn − ak
∣∣∣∣ .

By Corollary 1 equation (9) has no Lipschitz solution ϕ : R→ Y . �

2. Assuming now that X is a real separable Hilbert space, X 6= {0},
Λ: X → X is linear and continuous with ‖Λ‖ < 1, and µ is a probability
Borel measure on X, consider the equation

(10) ϕ(x) = µ̂(x)ϕ(Λx),

where µ̂ denotes the Fourier transform of µ,

µ̂(x) =

∫
X

ei(x|z)µ(dz) for x ∈ X.

Theorem 2. If µ has a finite first moment, then there exists a probability
Borel measure ν on X with a finite first moment such that ν̂ solves (10), and
for any continuous at zero solution ϕ : X → C of (10) we have

ϕ = ϕ(0)ν̂;

in particular, every continuous at zero solution ϕ : X → C of (10) is of class
C1 and Lipschitz.

Remind that a probability Borel measure ν on X has a finite first moment
provided the integral

∫
X
‖x‖ν(dx) is finite. We shall prove Theorem 2 later

on, together with the next one and with the following remark.

Remark. If µ has a finite first moment and Λ is injective, then for every
c ∈ C the set of all discontinuous at zero solutions ϕ : X → C of (10) such
that ϕ(0) = c and ϕ |X\{0} is of class C1 and Lipschitz has the cardinality of
the continuum.

Theorem 2 implies that for every Borel and integrable with respect to µ
function ξ : X → X the equation

(11) ϕ(x) = ϕ(Λx)

∫
X

ei(x|ξ(z))µ(dz)



Around the weak limit of iterates of random-valued functions 43

has exactly one continuous at zero solution ϕξ : X → C such that ϕξ(0) = 1,
and it is of class C1 and Lipschitz. Consequently, we have the operator ξ 7→
ϕξ, ξ ∈ L1(µ,X), and a kind of its continuity gives the following theorem.

Theorem 3. If ξ, η : X → X are Borel and integrable with respect to µ,
then ∣∣ϕξ(x)− ϕη(x)

∣∣ ≤ ‖x‖
1− ‖Λ‖

∫
X

‖ξ(z)− η(z)‖µ(dz) for x ∈ X.

Proofs. Consider the probability space (X,B, µ) and, given Borel ξ : X →
X integrable with respect to µ, the rv-function f on it defined by

f(x, ω) = Λ∗x+ ξ(ω) for (x, ω) ∈ X ×X,

as well as the limit distribution πf . Put πξ = πf . According to [4, Theorem
3.1] π̂ξ solves (11). Since the first moment of πξ is finite, π̂ξ is of class C1 and
Lipschitz.

To prove Theorem 2 put ν = πidX and let ϕ : X → C be a continuous at
zero solution of (10). Then

ϕ(x) = ϕ(Λnx)

n−1∏
k=0

∫
X

ei(Λ
kx|z)µ(dz) for n ∈ N, x ∈ X,

and limn→∞ Λnx = 0 for x ∈ X. Since∣∣∣∣∫
X

ei(Λ
kx|z)µ(dz)

∣∣∣∣ ≤ ∫
X

∣∣∣ei(Λkx|z)∣∣∣µ(dz) = 1

for k ∈ N ∪ {0} and x ∈ X, it shows that if ϕ(0) = 0, then ϕ = 0, and if
ϕ(0) 6= 0, then

ϕ(x) = ϕ(0)

∞∏
n=0

∫
X

ei(Λ
nx|z)µ(dz) for x ∈ X.

Consequently, for every c ∈ C equation (10) has at most one continuous at
zero solution ϕ : X → C satisfying ϕ(0) = c and by the first part of the proof
cν̂ is such a solution.

To get Theorem 3 it is enough to observe that since ϕξ = π̂ξ, ϕη = π̂η and∣∣∣ei(x|z1) − ei(x|z2)
∣∣∣ ≤ ‖x‖‖z1 − z2‖ for x, z1, z2 ∈ X,
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by Theorem 1 for every x ∈ X we have

∣∣ϕξ(x)− ϕη(x)
∣∣ =

∣∣∣∣∫
X

ei(x|z)πξ(dz)−
∫
X

ei(x|z)πη(dz)

∣∣∣∣
≤ ‖x‖

1− ‖Λ‖

∫
X

‖ξ(z)− η(z)‖µ(dz).

To verify the Remark given c ∈ C for every a ∈ C\{c} define ϕa : X → C by

ϕa(x) = aν̂(x) for x ∈ X \ {0}, ϕa(0) = c,

and note that it solves (10), it is discontinuous at zero and ϕa|X\{0} is of class
C1 and Lipschitz. �
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