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REMARKS CONNECTED WITH THE WEAK LIMIT
OF ITERATES OF SOME RANDOM-VALUED FUNCTIONS
AND ITERATIVE FUNCTIONAL EQUATIONS

KAROL BARON

Dedicated to Professor Zygfryd Kominek on his 75th birthday

Abstract. The paper consists of two parts. At first, assuming that (2, .A, P)
is a probability space and (X, ) is a complete and separable metric space with
the o-algebra B of all its Borel subsets we consider the set R, of all B ® A-
measurable and contractive in mean functions f: X x Q@ — X with finite
integral [, o (f(z,w),z) P(dw) for z € X, the weak limit 7wl of the sequence
of iterates of f € R, and investigate continuity-like property of the function
f — nf f € R¢, and Lipschitz solutions ¢ that take values in a separable
Banach space of the equation

olz) = /Q o (f(,w)) P(dw) + F(x).

Next, assuming that X is a real separable Hilbert space, A: X — X is linear
and continuous with ||A|| < 1, and p is a probability Borel measure on X with
finite first moment we examine continuous at zero solutions ¢: X — C of the
equation

p(z) = f(z)p(Az)

which characterizes the limit distribution 7/ for some special f € Re.
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Fix a probability space (£2,.A4, P) and a complete and separable metric
space (X, 0). Let B denote the o-algebra of all Borel subsets of X.

We say that f: X x Q — X is a random-valued function (an rv-function
for short) if it is measurable with respect to the product o-algebra B® A. The
iterates of such an rv-function are given by

oz, wi,we, .. ) =2, f(z,wi,ws,...) = (" Nz, w,w, ., wh)
for  from X and (wy,ws,...) from Q% defined as QY. Note that f": X x
2% — X is an rv-function on the product probability space (2°°, A%, P*>).
More exactly, the n-th iterate f™ is B ® A,-measurable, where A, denotes
the o-algebra of all sets of the form
{(wl,a)g,...) € N> (wl,...,wn) S A}
with A from the product o-algebra A™. (See [7, Sec. 1.4], [5].)

A simple criterion for the convergence in law of (f"(x,)),cy to a random
variable independent of x € X was proved in [I] and applied to the equation

1) o(z) = /Q o (F(2,w)) P(dw) + F(2)

with ¢ as the unknown function. This criterion reads.
(H) There exists a A € (0,1) such that

| @), £:.0)) P) < dgfa ) for o€ X
and
(2) /Qg(f(a:,w),;v)P(dw)<oo for z € X.
Thus, denoting by 7 (z,-) the distribution of f"(z,), i.e.,

7l (z,B) = P>® (f"(x,-) € B) forneNU{0}, z € X and B € B,

hypothesis (H) guarantees the existence of a probability Borel measure 7/ on
X such that

lim w(z)md (z,dz) :/ u(z)mf (dz)
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for x € X and for any continuous and bounded u: X — R; moreover, as
observed in [3] (see also [6]),

(3) /X o(z, 2)n! (dz) < 0o for z € X.

In [2] we considered continuity-like property of the function f ~ 7/. In [4]
we characterized the limit distribution =/ via a functional equation for its
characteristic function for some special rv-functions in Hilbert spaces. In the
present paper we are strengthening the result of [2], apply it to equation (1)
and consider also the equation used for the above mentioned characterization
of the limit distribution.

1. Assuming that (€, .4, P) is a probability space and (X, p) is a complete

and separable metric space, consider the set R, of all rv-functions f: X xQ —
X such that

/QQ(f(%w%f(va))P(dw) < Apo(x,z) forx,ze X

with a Ay € [0,1) and (2 holds. Put also

d(f,g) = sup {/Q o(f(z,w),g(x,w))P(dw): = € X} for f,g € Re.

The theorem in [2] says that if f,g € R., then

(4) ’ /X udr! — /X udm?

for every non-expansive u: X — [—1,1]. In fact the above inequality was
proved there for every non-expansive and bounded u: X — R. But if f € R,
then holds and so every Lipschitz function mapping X into a separable
Banach space is Bochner integrable with respect to 7/. Therefore we can ask
whether holds also for such a function. The theorem reads as follows.

1

= 1 — min{Ay, /\g}d(f,g)

THEOREM 1. If f,g € R, then

(5) H /X udr! — /X udm?

for every non-expansive u mapping X into a separable Banach space.

1
<
~ 1—min{As, Ay}

d(f,g)
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PRrROOF. Let u be a non-expansive mapping of X into a separable Banach
space Y. To show that holds we may assume that Y is a real space.
Fix y* € Y* such that ||y*|| <1 and

(6) H /X udr! — /X udr?|| = y* ( /X udr! — /X ud7T9>.

For every k € N the function 75, : R — R given by 7 (t) = —k for t € (—o0, —k),
T(t) = t for t € [~k k|, 7(t) = k for t € (k,00) is non-expansive and
|7.(t)| < |t| for t € R. Consequently, since holds for every non-expansive
and bounded u: X — R, for every k € N we have

1

= 1 —min{Ay, )\g}d(f’ 9

(7) ’/ Tkoy*oudﬂf—/ T 0 y* o udm?
X X

and
|7k (v u(2))| < ||u(z)]] for z € X and k € N.

Hence, applying the Lebesgue dominated convergence theorem and passing
with k£ to the limit in we get

'/ y*oudﬂf—/ y* o udm?
X X

and follows now from @ O

1
- 1 —min{Ay, )\g}d(f’ 9)

The following example shows that both sides of can be equal and non-
Z€ro.

ExampPLE 1. If @ = {0,1}, P{w}) = 1/2 for w € {0,1} and fu(z,w)
(x+aw)/2 for x € R, we {0,1} and a € (0,00), then f, € R, with Ay, =
and (see [4, Example 1|)

vl ||

1
mle(B) = =X\ (BN0,a]) for Borel B C R and a € (0, 0),
«

where A; denotes the one-dimensional Lebesgue measure. Hence

1 «
/udﬂf" = / u(x)dx
R @ Jo
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for every a € (0,00) and Lipschitz u: R — R. In particular,

/wafa(dx)—/wafﬁ(dx)

for a, B € (0,00).

1
1-— min{/\fa,)\fﬁ}

1
=gla—6l=

d(fa, f5)

Denoting by || F||1, the smallest Lipschitz constant for a Lipschitz function
F we have the following corollary concerning Lipschitz solutions ¢ of .

COROLLARY 1. Assume F' is a Lipschitz mapping of X into a separable
Banach space Y. If f,g € R. and

(8) s H/ Fdn?

T min g, a0

then equation has no Lipschitz solution ¢: X =Y.

ProoF. It follows from Theorem [1| and that

/Fdﬂ'f— Fdﬂ'g I1F ]z /Fdﬂ'g
X - 17m1n{)\f, g}

whence [, F dr! # 0 and according to [4, Theorem 2.1] equation has no
Lipschitz solution ¢: X — Y. O

The following example shows that under the assumptions of Corollary []
equation (1)) may have a continuous solution. (Cf. [I, Example 4.2].)

EXAMPLE 2. Assume pi,ps are positive reals, py < % and p; + p2 = 1,
reals Ly, Lo satisfy

pil3 <1, pi|lLi]+ 3y/p2(l—p1L3) <1, |Ly|= v (1 —p1L3)/p2,

and a € R\{0}. Define F: R — R by
F(x) = —ap2(2L2x + a).

Putting Q = {1,2} and P({k}) = py, for k € {1,2} consider the rv-functions
f,9: Rx Q — R given by

f(z,1) = Lyz, f(2,2) = Loz +a, g¢g(z,k)=Ligx fork e {l1,2}.
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Then f,g € R. with

Ar = XAg = pilLa| + po|Lo| = pr|La| + y/p2(1 = p1 L7) < 1,

and equation takes the form

o(x) = pro(Liz) + pep(Lex + a) + F(x).

Since pyL? + paL3 = 1, the function z — 22, x € R, solves it. Moreover,

g9(0,w) = 0 for w € Q, whence also ¢"(0,w) = 0 for w € 2% and n € N.
Consequently, 79 is the Dirac measure &y and

/Fdﬂ'g = F(0) = —pya’.
R

Finally, [|F||r = 2p2|aLs|, d(f,g) = pzlal, and so

11
1 —min{Af, Ag}

2p3a?|L
d(f.9) = pac L < paa® =

1= (L] + V/p2(1 = pi L3))

Consider also a special case of , viz.

/Fdwg
R

n—1

1 1
(9) o) =~ d e <n:c + ak> + F(x).
k=0
COROLLARY 2. Assume n > 2 is an integer and F is a Lipschitz map-
ping of R into a separable Banach space Y with fol F(z)dz # 0. If reals
ag, - --,0n_1 Satisfy

n—1

7))

k=0

k

— —a ,
n

<n—1) H/OIF(:C)d:L’

then equation @ has no Lipschitz solution ¢: R — Y.

PrROOF. Put @ = {0,1,...,n — 1}, P({k}) = % for k € Q and define
f,9: RxQ — R by

1 1 k
flx, k)= —x+ag, gz, k)=—x+—.
n n n



42 Karol Baron

Clearly f,g € R, with Ay = Ay = L and (see [4, Example 1]) 79(B) =
A1(BN[0,1]) for Borel B C R. Moreover,

1
2 ap
n j—
By Corollary (1] equation @D has no Lipschitz solution ¢: R — Y. ([

2. Assuming now that X is a real separable Hilbert space, X # {0},
A: X — X is linear and continuous with ||A|| < 1, and p is a probability
Borel measure on X, consider the equation

(10) p(x) = px)p(Ar),

where [ denotes the Fourier transform of u,

a(x) = / @2 (dz)  for x € X.
X

THEOREM 2. If u has a finite first moment, then there exists a probability
Borel measure v on X with a finite first moment such that U solves , and
for any continuous at zero solution p: X — C of we have

= (0)7;

in particular, every continuous at zero solution ¢: X — C of is of class
C' and Lipschitz.

Remind that a probability Borel measure v on X has a finite first moment
provided the integral [, ||z|/v(dz) is finite. We shall prove Theorem [2] later
on, together with the next one and with the following remark.

REMARK. If p has a finite first moment and A is injective, then for every
¢ € C the set of all discontinuous at zero solutions p: X — C of such
that ¢(0) = ¢ and ¢ | x\ (o} is of class C* and Lipschitz has the cardinality of
the continuum.

Theorem [2] implies that for every Borel and integrable with respect to u
function £: X — X the equation

(11) o(z) = p(Az) /X eI ()
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has exactly one continuous at zero solution ¢*: X — C such that ¢%(0) = 1,
and it is of class C! and Lipschitz. Consequently, we have the operator &
¢%, €€ LY (u, X), and a kind of its continuity gives the following theorem.

THEOREM 3. If £,n: X — X are Borel and integrable with respect to u,
then

@)~ )| < 1 [ 16~ n@ln(e) for a e x.

PRroors. Consider the probability space (X, B, ) and, given Borel : X —
X integrable with respect to p, the rv-function f on it defined by

flz,w) =Nz +&(w) for (z,w) e X x X,

as well as the limit distribution 7/. Put m¢ = 7/. According to [4, Theorem
3.1 ¢ solves . Since the first moment of ¢ is finite, ¢ is of class C and
Lipschitz.

To prove Theorem [2] put v = m;4, and let ¢: X — C be a continuous at
zero solution of (10)). Then

n—1
o(z) = p(A™z) H / ei(Akw|z)u(dz) forneN, x € X,
k=0"X

and lim,,_,., A"z = 0 for x € X. Since

'/Xei(Akxlz)u(dZ) S/X

for k € NU{0} and = € X, it shows that if ©(0) = 0, then ¢ = 0, and if
»(0) # 0, then

ei(Aka:|z) ,u(dz) =1

= (0) H /X A2 (dz)  for x € X.
n=0

Consequently, for every ¢ € C equation has at most one continuous at
zero solution ¢: X — C satisfying ¢(0) = ¢ and by the first part of the proof
cp is such a solution.

To get Theorem it is enough to observe that since ¢* = ¢, " = 7, and

@2 — @2 <zf||2y — 22| for @, 21,22 € X,
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by Theorem [I] for every z € X we have

|<,05(:E) _ SOn(CE)| _ ‘/ ei(w\z)ﬂé(dz) _ /X pRICIE P (dz)

<7 §(2) = n(z)|u(dz
i [ ) =)
To verify the Remark given ¢ € C for every a € C\{c} define p,: X — C by

vo(z) =av(z) forz e X\ {0}, ¢q(0)=c

and note that it solves (10)), it is discontinuous at zero and ¢, | x\{o} is of class
C' and Lipschitz.
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