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LIMITS OF SEQUENCES OF FEEBLY-TYPE
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Dedicated to Professor Zygfryd Kominek on his 75th birthday

Abstract. We consider the following families of real-valued functions defined
on R2: feebly continuous functions (FC), very feebly continuous functions
(VFC), and two-feebly continuous functions (TFC). It is known that the in-
clusions FC ⊂ VFC ⊂ TFC are proper. We study pointwise and uniform limits
of sequences with terms taken from these families.

1. Introduction

In the paper, we continue our former investigations from [1] on various
classes of feebly-like continuous real-valued functions in two variables. Let us
recall basic definitions.

According to [3], we say that a function f : R2 → R is feebly continuous at
a point 〈x, y〉 ∈ R2 if there exist sequences xn ↘ x and ym ↘ y such that

(1) lim
n→∞

lim
m→∞

f(xn, ym) = f(x, y).
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Here the symbol xn ↘ x means that the sequence (xn) is strictly decreas-
ing and convergent to x. The equality (1) means that, for every n, a limit
limm→∞ f(xn, ym) = an exists and limn→∞ an = f(x, y).

In [3], Leader considered also another notion which is weaker than feebly
continuity. Namely, f : R2 → R is called very feebly continuous at a point 〈x, y〉
if there exist a sequence xn ↘ x and, for each n ∈ N, a sequence y(n)m ↘ y
such that

lim
n→∞

lim
m→∞

f(xn, y
(n)
m ) = f(x, y).

In [1], we proposed a related notion. We say that f : R2 → R is two-feebly
continuous at 〈x, y〉 if there exist sequences xn ↘ x and yn ↘ y such that
limn→∞ f(xn, yn) = f(x, y).

We say that f : R2 → R is feebly (very feebly, two-feebly) continuous
whenever it has this property at every point of R2. The families of feebly
(very feebly, two-feebly) continuous functions will be denoted by FC (VFC,
TFC). It follows that

C ⊂ FC ⊂ VFC ⊂ TFC

and the inclusions are proper; see [1]. Here C denotes, as usual, the family
of all continuous functions. Note that Leader in [3] constructed, under the
Continuum Hypothesis, a function which is nowhere feebly continuous. How-
ever, such functions are neither measurable nor with Baire property, see [1,
Theorem 1].

Our purpose in this paper is to study pointwise and uniform limits of
sequences with terms taken from the classes FC, VFC and TFC.

2. Pointwise limits

Given functions f and fn, n ∈ N, from R2 to R, the symbol fn −→ f will
stand for the pointwise convergence of a sequence (fn) to f .

Proposition 1. Every function f : R2 → R is a pointwise limit of se-
quences (fk), (gk) and (hk) with terms taken from FC, VFC \ FC, and
TFC \ VFC, respectively. If, moreover, f is Borel (Lebesgue, Baire) measur-
able, then all functions fk, gk, hk have the same property. Consequently, each
of the sets FC, VFC \ FC, or TFC \ VFC is dense in the space RR2

with the
topology of pointwise convergence.
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Proof. Fix f : R2 → R.
I. First, we will construct a sequence (fk), with terms in FC, and such

that fk −→ f . Write Q = {qn : n ∈ N}. Let {Ak,n : k, n ∈ N} be a family of
pairwise disjoint countable subsets of R, each dense in R. Define fk : R2 → R
by the formula

fk(x, y) :=

{
qn if x ∈ Ak,n, n ∈ N,
f(x, y) otherwise.

Clearly, each fk is feebly continuous, fk −→ f , and the functions fk are
measurable whenever f has this property.

II. We will define a sequence (gk), with terms in VFC \ FC, pointwise
convergent to f . We use some ideas from [1] (cf. Lemma 16 and Theorem 17).
Choose distinct reals vkn, for k, n ∈ N, such that each set {vkn : n ∈ N}, k ∈ N, is
dense in R. Let {Dk

n,m : k, n,m ∈ N} be a family of pairwise disjoint countable
dense subsets of R \ N.

Fix k ∈ N. List Dk
n,1 = {dkn,m : m ∈ N} and put Dk

n :=
⋃

m{dkn,m}×Dk
n,m,

Dk :=
⋃

nD
k
n. Then define functions fk and gk from R2 to R by the formulas

fk :=
∑
n∈N

vknχDk
n
,

gk(x, y) :=


fk(x, y) for 〈x, y〉 ∈ Dk,

k + 1 for 〈x, y〉 = 〈k, k〉,
max(min(f(x, y), k),−k) otherwise.

Note that gk is well-defined because 〈k, k〉 6∈ Dk. It follows from [1, Lemma 16]
that every extension of fk|Dk to the whole plane is very feebly continuous.
Hence gk|Dk = fk|Dk implies that gk ∈ VFC. Clearly, gk −→ f .

Now, observe that gk is not feebly continuous at the point 〈k, k〉. This is
a consequence of the fact that gk(k, k) 6= 0 while the sets Ax := {y > k :
gk(x, y) 6= 0} ⊂ Dk

n,m, where x = dkn,m, and the sets Dk
n,m are pairwise

disjoint.
Finally, assume that the function f is measurable. Then the function

f̂k = max(min(f(x, y), k),−k) is measurable, too. Since gk = f̂k on a co-
countable set, gk is measurable, too.

III. Finally, we construct a sequence (hk), with terms in TFC \ VFC,
pointwise convergent to f . By the first assertion, f is the pointwise limit
of a sequence (fk) with terms in FC. For k ∈ N, set Sk := [k − 1

4 , k + 1
4)

× [k − 1
4 , k +

1
4) and define hk : R2 → R as
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hk(x, y) :=


fk(x, y) if 〈x, y〉 ∈ R2 \ Sk,

x if 〈x, y〉 ∈ Sk and x = y,

0 if 〈x, y〉 ∈ Sk and x 6= y.

Then limk hk = limk fk = f . Moreover, each hk is in TFC and it is not very
feebly continuous at the point 〈k, k〉. Finally, it is easy to observe that hk is
measurable whenever f has this property. �

Remark 2. It is easy to observe that sequences (fn), (gn) and (hn) defined
in the proof of Proposition 1 converge discretely to the function f . Recall that
(fn) is discretely convergent to a function f : X → R if for every x ∈ X there
is N with fn(x) = f(x) for n > N . This notion was introduced by Császár
and Laczkovich [2]. It is much stronger than pointwise convergence.

3. Uniform limits

Recall that the topology of uniform convergence in the space RR2

of all
functions from R2 into R is metrizable by the metric

d(f, g) := min

(
1, sup

x∈R2

|f(x)− g(x)|
)
.

Proposition 3. The families VFC and TFC are closed in the topology of
uniform convergence in RR2

.

Proof. Suppose f : R2 → R is the uniform limit of a sequence (fn) with
terms in VFC. We may assume that d(fn, f) < 1

n for each n ∈ N. Fix
〈x, y〉 ∈ R2. We will show that f is very feebly continuous at 〈x, y〉. For
a given n ∈ N, since fn is very feebly continuous at 〈x, y〉, there are: xn ∈ R
and y(n)m ↘ y such that
(i) |xn − x| < 1

n ;
(ii) | limm fn(xn, y

(n)
m )− fn(x, y)| < 1

n .

The condition (ii) implies that the sequence
(
fn(xn, y

(n)
m )

)
m

is bounded, hence(
f(xn, y

(n)
m )

)
m

is bounded too. Let km ↗ ∞ be such that
(
f(xn, y

(n)
km

)
)
m

is
convergent to some λn. Then |λn − f(x, y)| < 2

n , and for z(n)m := y
(n)
km

we have
z
(n)
m ↘ y. We may assume that xn ↘ x. Then limn limm f(xn, z

(n)
m ) = f(x, y),

so f is very feebly continuous at 〈x, y〉.



Limits of sequences of feebly-type continuous functions 31

The argument for TFC is similar. Suppose that f : R2 → R is the uniform
limit of a sequence (fn) with terms in TFC, and assume that d(fn, f) < 1

n

for each n ∈ N. Fix 〈x, y〉 ∈ R2. For a given n ∈ N, since fn is two-
feebly continuous at 〈x, y〉, pick sequences x(n)m ↘ x and y(n)m ↘ y such that
limm fn(x

(n)
m , y

(n)
m ) = fn(x, y). Then choose inductively a sequence mn ↗ ∞

such that for every n ∈ N,

|fn(x(n)mn
, y(n)mn

)− fn(x, y)| <
1

n
.

This implies that |f(x(n)mn , y
(n)
mn) − f(x, y)| < 3

n for every n which shows that
f ∈ TFC. �

In the sequel, we will use the following notation. We will write p ∈ FC(f)
whenever f : R2 → R is feebly continuous at a point p ∈ R2 (similarly, for
very feebly continuity and two-feebly continuity).

We need the following lemma which results directly from the definition of
very feebly continuity.

Lemma 4 ([1, Lemma 3]). Let f : R2 → R. A point z = 〈x, y〉 belongs to
R2\V FC(f) if and only if there exist an interval (p, q) containing f(z), a real
t > 0 and real numbers rs > 0, chosen for every s ∈ (0, t), such that f does
not attain values in (p, q) at any point of the set

G(z) := {〈x+ a, y + b〉 : 0 < a < t, 0 < b < ra}.

Proposition 5. The family TFC\VFC is uniformly dense in TFC. Con-
sequently, VFC is nowhere dense in TFC with the topology of uniform con-
vergence.

Proof. Let f ∈ TFC. For a given ε > 0, we will find a function
g ∈ TFC\VFC with d(f, g) ≤ 2ε. Since f ∈ TFC, there are sequences x̂n ↘ 0,
ŷn ↘ 0 with limn f(x̂n, ŷn) = f(0, 0). For any n ∈ N, let Ln denote the closed
segment with end-points 〈x̂n, ŷn〉, 〈x̂n+1, ŷn+1〉, and let L := {〈0, 0〉}∪

⋃
n Ln.

Then define

T :=

{
〈x, y〉 ∈ R2 : x ∈ (0, x̂1) & y ∈

[
0,

1

2
L(x)

]}
,

where L(x) denotes the unique y with 〈x, y〉 ∈ L. For every k ∈ N, put

W := {〈x, y〉 ∈ T : |f(x, y)− f(0, 0)| < ε} ,
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W+ : = {〈x, y〉 ∈W : f(0, 0) < f(x, y) < f(0, 0) + ε} ,

W− : = {〈x, y〉 ∈W : f(0, 0) > f(x, y) > f(0, 0)− ε} .

Moreover, decompose the set V :=W ∩ f−1[{f(0, 0)}] into two parts. Let V +

be the set of all 〈x, y〉 ∈ V for which there are sequences xn ↘ x, yn ↘ y
with f(xn, yn) ≥ f(0, 0) and limn f(xn, yn) = f(x, y), and set V − := V \ V +.
Note that for any 〈x, y〉 ∈ V −, there are xn ↘ x, yn ↘ y such that f(xn, yn)
< f(0, 0) and limn f(xn, yn) = f(x, y).

Now, define g : R2 → R by the formula

g(x, y) :=


f(0, 0) + ε for 〈x, y〉 ∈W+ ∪ V +,

f(0, 0)− ε for 〈x, y〉 ∈W− ∪ V −,
f(x, y) for 〈x, y〉 ∈ R2 \W.

Then obviously, d(g, f) ≤ 2ε.
Let us verify that g ∈ TFC. Since g(x̂n, ŷn) = f(x̂n, ŷn) for all n ∈ N,

we have 〈0, 0〉 ∈ TFC(g). For every point 〈x, y〉 6∈ Z := {〈0, 0〉} ∪ T there is
a right-hand open square S centered at 〈x, y〉 and disjoint with Z, so from
g = f on R2 \Z and f ∈ TFC it follows that R2 \Z ⊂ TFC(g). Now, assume
that 〈x, y〉 ∈ T . Since 〈x, y〉 ∈ TFC(f), there are xn ↘ x, yn ↘ y with
limn f(xn, yn) = f(x, y). We consider a few cases.

1. First, suppose that |f(x, y)−f(0, 0)| > ε. Then |f(xn, yn)−f(0, 0)| > ε
for almost all n, hence g(xn, yn) = f(xn, yn), so limn g(xn, yn) = limn f(xn, yn)
= f(x, y) = g(x, y) and therefore, 〈x, y〉 ∈ TFC(g).

2. Suppose that 〈x, y〉 ∈ W+. Then 〈xn, yn〉 ∈ W+ for almost all n, and
we have limn g(xn, yn) = f(0, 0) + ε = g(x, y). Similarly, if 〈x, y〉 ∈W−.

3. Now, let f(x, y) = f(0, 0) + ε. Then there is a sequence in ↗ ∞ such
that either f(xin , yin) > f(0, 0) + ε for every n, or f(xin , yin) = f(0, 0) + ε
for all n, or 〈xin , yin〉 ∈ W+ for each n. In each of such cases limn g(xin , yin)
= f(0, 0) + ε = g(x, y). Similarly, if f(x, y) = f(0, 0)− ε.

4. Finally, suppose that 〈x, y〉 ∈ V +. We may assume that 〈xn, yn〉 ∈
W+ ∪V + for all n. Then limn g(xn, yn) = f(0, 0)+ ε = g(x, y), hence 〈x, y〉 ∈
TFC(g). Similarly, if 〈x, y〉 ∈ V −.

Also, g is not very feebly continuous at the point 〈0, 0〉 by Lemma 4.
Thus the above argument leads to the first assertion stating that

TFC \ VFC is uniformly dense in TFC. Now, the second assertion follows
since VFC is closed by Proposition 3. �

Proposition 6. The family FC is not closed in the space RR2

with the
topology of uniform convergence.
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Proof. Let {pk : k ∈ N} be the set of all prime numbers in N. For any
triple 〈k, i, j〉 ∈ N3, let S(k, i, j) denote a right-hand open square in R2 cen-
tered at the point 〈 1

pi
k

, 1

pj
k

〉, S(k, i, j) := I(k, i, j) × J(k, i, j), where I(k, i, j)
and J(k, i, j) are intervals of the form [a, b) with a, b ∈ R, a < b. We may
require that the closures of different intervals J(k, i, j) and J(k′, i′, j′) are
disjoint.

For k ∈ N, define a function fk : R2 → R as follows

fk(x, y) :=


1− 1

k for 〈x, y〉 ∈ {〈0, 0〉} ∪
⋃

n>k

⋃
i,j∈N S(n, i, j),

1− 1
n for 〈x, y〉 ∈

⋃
i,j∈N S(n, i, j), n ≤ k,

0 otherwise.

It is easy to see that each fk is feebly continuous. In fact we only need to check
that 〈0, 0〉 ∈ FC(f) but this can be provided by the sequences (xn) :=

(
1
pn
k

)
and (ym) :=

(
1
pm
k

)
.

Moreover, the sequence (fk) is uniformly convergent to the function

f(x, y) :=


1 for 〈x, y〉 = 〈0, 0〉,

1− 1
n for 〈x, y〉 ∈

⋃
i,j∈N S(n, i, j), n ∈ N,

0 otherwise,

which is not feebly continuous at the point 〈0, 0〉. �

Proposition 7. The family FC is not uniformly dense in the class VFC.

Proof. Choose reals rn, for n ∈ N, with the following properties:
• 0 < rn < 1/n for every n ∈ N;
• rn

rm
6∈ Q for n 6= m.

For all n,m ∈ N, define xn := 1
n and y

(n)
m := rn

m , and let S(n,m) be
a right-hand open square centered at the point 〈xn, y(n)m 〉, S(n,m) := I(n,m)
× J(n,m), where cl(J(n,m)) ∩ cl(J(i, j)) = ∅ whenever 〈n,m〉 6= 〈i, j〉. Let
f̃ : R2 → R be the following modification of the function f : R2 → R from [1,
Example 8]:

f̃ := χB, where B := {〈0, 0〉} ∪
⋃
n∈N

⋃
m∈N

S(n,m).

Observe that the function f̃ is very feebly continuous, while there is no g ∈ FC

with d(g, f̃) < 1
2 . �
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Proposition 8. The family VFC \ FC is uniformly dense in VFC.

Proof. For given f ∈ FC and ε > 0, we will construct g ∈ VFC \ FC
with d(f, g) ≤ ε. Clearly, we may assume that f(0, 0) = 0. Since f is feebly
continuous at the point 〈0, 0〉, there are sequences xn ↘ 0, ym ↘ 0 with
limn limm f(xn, ym) = 0. Divide the set N into infinitely many sets which
are ordered as increasing sequences (ikm)m, k ∈ N. Let y(n)m := yinm . For any
n,m ∈ N, let S(n,m) := I(n,m)×J(n,m) be a right-side open square centered
at the point 〈xn, y(n)m 〉. We may assume that, for all pairs 〈i, j〉, 〈n,m〉 of
natural numbers, the following conditions hold:
(1) if i < n then sup I(i, j) < inf I(n,m);
(2) if j < m then sup J(n,m) < inf J(n, j).
Let S := {〈0, 0〉} ∪

⋃
n,m S(n,m). Decompose the set Z := R2 \ S into three

parts A+, A−, and A0, where

A+ : = Z ∩ f−1((0,+∞)),

A− : = Z ∩ f−1((−∞, 0)),

A0 : = Z \ (A+ ∪A−).

Moreover, divide the set A0 into two subsets A+
0 and A−0 where A+

0 is the
set of all points 〈x, y〉 ∈ A0 for which there are sn ↘ x, tm ↘ y such that
f(sn, tm) ≥ 0 and limn limm f(sn, tm) = 0, and let A−0 := A0 \A+

0 . Note that,
if 〈x, y〉 ∈ A−0 , then there are sn ↘ x, tm ↘ y such that f(sn, tm) ∈ A−0 and
limn limm f(sn, tm) = 0.

Now, we are ready to define the function g : R2 → R. Set

g(x, y) :=


f(x, y) for 〈x, y〉 ∈ S,

f(x, y) + ε for 〈x, y〉 ∈ A+ ∪A+
0 ,

f(x, y)− ε for 〈x, y〉 ∈ A− ∪A−0 .

Then g is as we need. Indeed, it is clear that d(f, g) ≤ ε. To see that g is very
feebly continuous at the point 〈0, 0〉, consider the sequences (xn), (y

(n)
m )m.

For every n, (y
(n)
m )m is a subsequence of (ym), therefore limm g(xn, y

(n)
m )

= limm f(xn, ym). Hence limn limm g(xn, y
(n)
m ) = limn limm f(xn, ym) =f(0, 0)

= g(0, 0).
Now, we will verify that 〈0, 0〉 6∈ FC(g). Suppose to the contrary that

exist sn ↘ 0, tm ↘ 0 such that limn limm g(sn, tm) = g(0, 0) = 0. We can
assume that | limm g(sn, tm)| < ε

2 . This means that 〈sn, tm〉 ∈
⋃

i,j S(i, j),
so tm belongs to infinitely many intervals J(i, j) which is impossible. Finally,
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similarly as in the proof of Proposition 5, one can check that g is feebly
continuous at each point 〈x, y〉 6= 〈0, 0〉. �

Problem.
1. Is the set VFC\FC residual (non-meager, or Borel) in the space VFC with

the topology of uniform convergence?
2. Can every Borel (Lebesgue, or Baire) measurable function f ∈ VFC be

a uniform limit of a sequence of Borel (Lebesgue, or Baire) measurable
functions from the class VFC \ FC?
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