

Annales Mathematicae Silesianae **34** (2020), no. 1, 27–35 DOI: 10.2478/amsil-2020-0011

LIMITS OF SEQUENCES OF FEEBLY-TYPE CONTINUOUS FUNCTIONS

MAREK BALCERZAK^D, TOMASZ NATKANIEC, MAŁGORZATA TEREPETA

Dedicated to Professor Zygfryd Kominek on his 75th birthday

Abstract. We consider the following families of real-valued functions defined on \mathbb{R}^2 : feebly continuous functions (FC), very feebly continuous functions (VFC), and two-feebly continuous functions (TFC). It is known that the inclusions FC \subset VFC \subset TFC are proper. We study pointwise and uniform limits of sequences with terms taken from these families.

1. Introduction

In the paper, we continue our former investigations from [1] on various classes of feebly-like continuous real-valued functions in two variables. Let us recall basic definitions.

According to [3], we say that a function $f : \mathbb{R}^2 \to \mathbb{R}$ is feebly continuous at a point $\langle x, y \rangle \in \mathbb{R}^2$ if there exist sequences $x_n \searrow x$ and $y_m \searrow y$ such that

(1)
$$\lim_{n \to \infty} \lim_{m \to \infty} f(x_n, y_m) = f(x, y).$$

Received: 14.10.2019. Accepted: 03.06.2020. Published online: 09.07.2020. (2010) Mathematics Subject Classification: 26B05, 54C05, 54C30, 15A03.

Key words and phrases: functions in two variables, feebly continuity, very feebly continuity, two-feebly continuity, pointwise limit, topology of uniform convergence.

^{©2020} The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

Here the symbol $x_n \searrow x$ means that the sequence (x_n) is strictly decreasing and convergent to x. The equality (1) means that, for every n, a limit $\lim_{m\to\infty} f(x_n, y_m) = a_n$ exists and $\lim_{n\to\infty} a_n = f(x, y)$.

In [3], Leader considered also another notion which is weaker than feebly continuity. Namely, $f : \mathbb{R}^2 \to \mathbb{R}$ is called *very feebly continuous at* a point $\langle x, y \rangle$ if there exist a sequence $x_n \searrow x$ and, for each $n \in \mathbb{N}$, a sequence $y_m^{(n)} \searrow y$ such that

$$\lim_{n \to \infty} \lim_{m \to \infty} f(x_n, y_m^{(n)}) = f(x, y).$$

In [1], we proposed a related notion. We say that $f : \mathbb{R}^2 \to \mathbb{R}$ is two-feebly continuous at $\langle x, y \rangle$ if there exist sequences $x_n \searrow x$ and $y_n \searrow y$ such that $\lim_{n\to\infty} f(x_n, y_n) = f(x, y)$.

We say that $f: \mathbb{R}^2 \to \mathbb{R}$ is feebly (very feebly, two-feebly) continuous whenever it has this property at every point of \mathbb{R}^2 . The families of feebly (very feebly, two-feebly) continuous functions will be denoted by FC (VFC, TFC). It follows that

$$\mathbf{C} \subset \mathbf{F}\mathbf{C} \subset \mathbf{V}\mathbf{F}\mathbf{C} \subset \mathbf{T}\mathbf{F}\mathbf{C}$$

and the inclusions are proper; see [1]. Here C denotes, as usual, the family of all continuous functions. Note that Leader in [3] constructed, under the Continuum Hypothesis, a function which is nowhere feebly continuous. However, such functions are neither measurable nor with Baire property, see [1, Theorem 1].

Our purpose in this paper is to study pointwise and uniform limits of sequences with terms taken from the classes FC, VFC and TFC.

2. Pointwise limits

Given functions f and f_n , $n \in \mathbb{N}$, from \mathbb{R}^2 to \mathbb{R} , the symbol $f_n \longrightarrow f$ will stand for the pointwise convergence of a sequence (f_n) to f.

PROPOSITION 1. Every function $f : \mathbb{R}^2 \to \mathbb{R}$ is a pointwise limit of sequences (f_k) , (g_k) and (h_k) with terms taken from FC, VFC \ FC, and TFC \ VFC, respectively. If, moreover, f is Borel (Lebesgue, Baire) measurable, then all functions f_k , g_k , h_k have the same property. Consequently, each of the sets FC, VFC \ FC, or TFC \ VFC is dense in the space $\mathbb{R}^{\mathbb{R}^2}$ with the topology of pointwise convergence. PROOF. Fix $f : \mathbb{R}^2 \to \mathbb{R}$.

I. First, we will construct a sequence (f_k) , with terms in FC, and such that $f_k \longrightarrow f$. Write $\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$. Let $\{A_{k,n} : k, n \in \mathbb{N}\}$ be a family of pairwise disjoint countable subsets of \mathbb{R} , each dense in \mathbb{R} . Define $f_k : \mathbb{R}^2 \to \mathbb{R}$ by the formula

$$f_k(x,y) := \begin{cases} q_n & \text{if } x \in A_{k,n}, \ n \in \mathbb{N}, \\ f(x,y) & \text{otherwise.} \end{cases}$$

Clearly, each f_k is feebly continuous, $f_k \longrightarrow f$, and the functions f_k are measurable whenever f has this property.

II. We will define a sequence (g_k) , with terms in VFC \ FC, pointwise convergent to f. We use some ideas from [1] (cf. Lemma 16 and Theorem 17). Choose distinct reals v_n^k , for $k, n \in \mathbb{N}$, such that each set $\{v_n^k : n \in \mathbb{N}\}, k \in \mathbb{N}$, is dense in \mathbb{R} . Let $\{D_{n,m}^k : k, n, m \in \mathbb{N}\}$ be a family of pairwise disjoint countable dense subsets of $\mathbb{R} \setminus \mathbb{N}$.

Fix $k \in \mathbb{N}$. List $D_{n,1}^k = \{d_{n,m}^k \colon m \in \mathbb{N}\}$ and put $D_n^k := \bigcup_m \{d_{n,m}^k\} \times D_{n,m}^k$, $D^k := \bigcup_n D_n^k$. Then define functions f^k and g_k from \mathbb{R}^2 to \mathbb{R} by the formulas

$$f^k := \sum_{n \in \mathbb{N}} v_n^k \chi_{D_n^k}$$

$$g_k(x,y) := \begin{cases} f^k(x,y) & \text{for } \langle x,y \rangle \in D^k, \\ k+1 & \text{for } \langle x,y \rangle = \langle k,k \rangle, \\ \max(\min(f(x,y),k),-k) & \text{otherwise.} \end{cases}$$

Note that g_k is well-defined because $\langle k, k \rangle \notin D^k$. It follows from [1, Lemma 16] that every extension of $f^k | D^k$ to the whole plane is very feebly continuous. Hence $g_k | D^k = f^k | D^k$ implies that $g_k \in \text{VFC}$. Clearly, $g_k \longrightarrow f$.

Now, observe that g_k is not feebly continuous at the point $\langle k, k \rangle$. This is a consequence of the fact that $g_k(k,k) \neq 0$ while the sets $A_x := \{y > k : g_k(x,y) \neq 0\} \subset D_{n,m}^k$, where $x = d_{n,m}^k$, and the sets $D_{n,m}^k$ are pairwise disjoint.

Finally, assume that the function f is measurable. Then the function $\hat{f}_k = \max(\min(f(x, y), k), -k)$ is measurable, too. Since $g_k = \hat{f}_k$ on a cocountable set, g_k is measurable, too.

III. Finally, we construct a sequence (h_k) , with terms in TFC \ VFC, pointwise convergent to f. By the first assertion, f is the pointwise limit of a sequence (f_k) with terms in FC. For $k \in \mathbb{N}$, set $S_k := [k - \frac{1}{4}, k + \frac{1}{4})$ $\times [k - \frac{1}{4}, k + \frac{1}{4})$ and define $h_k : \mathbb{R}^2 \to \mathbb{R}$ as

$$h_k(x,y) := \begin{cases} f_k(x,y) & \text{if } \langle x,y \rangle \in \mathbb{R}^2 \setminus S_k, \\ x & \text{if } \langle x,y \rangle \in S_k \text{ and } x = y, \\ 0 & \text{if } \langle x,y \rangle \in S_k \text{ and } x \neq y. \end{cases}$$

Then $\lim_k h_k = \lim_k f_k = f$. Moreover, each h_k is in TFC and it is not very feebly continuous at the point $\langle k, k \rangle$. Finally, it is easy to observe that h_k is measurable whenever f has this property. \square

REMARK 2. It is easy to observe that sequences $(f_n), (g_n)$ and (h_n) defined in the proof of Proposition 1 converge discretely to the function f. Recall that (f_n) is discretely convergent to a function $f: X \to \mathbb{R}$ if for every $x \in X$ there is N with $f_n(x) = f(x)$ for n > N. This notion was introduced by Császár and Laczkovich [2]. It is much stronger than pointwise convergence.

3. Uniform limits

Recall that the topology of uniform convergence in the space $\mathbb{R}^{\mathbb{R}^2}$ of all functions from \mathbb{R}^2 into \mathbb{R} is metrizable by the metric

$$d(f,g) := \min\left(1, \sup_{x \in \mathbb{R}^2} |f(x) - g(x)|\right).$$

PROPOSITION 3. The families VFC and TFC are closed in the topology of uniform convergence in $\mathbb{R}^{\mathbb{R}^2}$.

PROOF. Suppose $f \colon \mathbb{R}^2 \to \mathbb{R}$ is the uniform limit of a sequence (f_n) with terms in VFC. We may assume that $d(f_n, f) < \frac{1}{n}$ for each $n \in \mathbb{N}$. Fix $\langle x,y\rangle \in \mathbb{R}^2$. We will show that f is very feebly continuous at $\langle x,y\rangle$. For a given $n \in \mathbb{N}$, since f_n is very feebly continuous at $\langle x, y \rangle$, there are: $x_n \in \mathbb{R}$ and $y_m^{(n)} \searrow y$ such that

- (i) $|x_n x| < \frac{1}{n};$
- (i) $|\lim_{m \to \infty} f_n(x_n, y_m^{(n)}) f_n(x, y)| < \frac{1}{n}$.

The condition (ii) implies that the sequence $\left(f_n(x_n, y_m^{(n)})\right)_m$ is bounded, hence $(f(x_n, y_m^{(n)}))_m$ is bounded too. Let $k_m \nearrow \infty$ be such that $(f(x_n, y_{k_m}^{(n)}))_m$ is convergent to some λ_n . Then $|\lambda_n - f(x, y)| < \frac{2}{n}$, and for $z_m^{(n)} := y_{k_m}^{(n)}$ we have $z_m^{(n)} \searrow y$. We may assume that $x_n \searrow x$. Then $\lim_n \lim_m f(x_n, z_m^{(n)}) = f(x, y)$, so f is very feebly continuous at $\langle x, y \rangle$.

The argument for TFC is similar. Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is the uniform limit of a sequence (f_n) with terms in TFC, and assume that $d(f_n, f) < \frac{1}{n}$ for each $n \in \mathbb{N}$. Fix $\langle x, y \rangle \in \mathbb{R}^2$. For a given $n \in \mathbb{N}$, since f_n is twofeebly continuous at $\langle x, y \rangle$, pick sequences $x_m^{(n)} \searrow x$ and $y_m^{(n)} \searrow y$ such that $\lim_m f_n(x_m^{(n)}, y_m^{(n)}) = f_n(x, y)$. Then choose inductively a sequence $m_n \nearrow \infty$ such that for every $n \in \mathbb{N}$,

$$|f_n(x_{m_n}^{(n)}, y_{m_n}^{(n)}) - f_n(x, y)| < \frac{1}{n}.$$

This implies that $|f(x_{m_n}^{(n)}, y_{m_n}^{(n)}) - f(x, y)| < \frac{3}{n}$ for every *n* which shows that $f \in \text{TFC}$.

In the sequel, we will use the following notation. We will write $p \in FC(f)$ whenever $f : \mathbb{R}^2 \to \mathbb{R}$ is feebly continuous at a point $p \in \mathbb{R}^2$ (similarly, for very feebly continuity and two-feebly continuity).

We need the following lemma which results directly from the definition of very feebly continuity.

LEMMA 4 ([1, Lemma 3]). Let $f : \mathbb{R}^2 \to \mathbb{R}$. A point $z = \langle x, y \rangle$ belongs to $\mathbb{R}^2 \setminus VFC(f)$ if and only if there exist an interval (p,q) containing f(z), a real t > 0 and real numbers $r_s > 0$, chosen for every $s \in (0,t)$, such that f does not attain values in (p,q) at any point of the set

$$G(z) := \{ \langle x + a, y + b \rangle \colon 0 < a < t, \ 0 < b < r_a \}.$$

PROPOSITION 5. The family TFC \ VFC is uniformly dense in TFC. Consequently, VFC is nowhere dense in TFC with the topology of uniform convergence.

PROOF. Let $f \in \text{TFC}$. For a given $\varepsilon > 0$, we will find a function $g \in \text{TFC} \setminus \text{VFC}$ with $d(f,g) \leq 2\varepsilon$. Since $f \in \text{TFC}$, there are sequences $\hat{x}_n \searrow 0$, $\hat{y}_n \searrow 0$ with $\lim_n f(\hat{x}_n, \hat{y}_n) = f(0,0)$. For any $n \in \mathbb{N}$, let L_n denote the closed segment with end-points $\langle \hat{x}_n, \hat{y}_n \rangle$, $\langle \hat{x}_{n+1}, \hat{y}_{n+1} \rangle$, and let $L := \{\langle 0, 0 \rangle\} \cup \bigcup_n L_n$. Then define

$$T := \left\{ \langle x, y \rangle \in \mathbb{R}^2 \colon x \in (0, \hat{x}_1) \& y \in \left[0, \frac{1}{2}L(x)\right] \right\},\$$

where L(x) denotes the unique y with $\langle x, y \rangle \in L$. For every $k \in \mathbb{N}$, put

$$W := \{ \langle x, y \rangle \in T \colon |f(x, y) - f(0, 0)| < \varepsilon \},\$$

$$\begin{split} W^+ &:= \{ \langle x, y \rangle \in W \colon f(0,0) < f(x,y) < f(0,0) + \varepsilon \} \,, \\ W^- &:= \{ \langle x, y \rangle \in W \colon f(0,0) > f(x,y) > f(0,0) - \varepsilon \} \,. \end{split}$$

Moreover, decompose the set $V := W \cap f^{-1}[\{f(0,0)\}]$ into two parts. Let V^+ be the set of all $\langle x, y \rangle \in V$ for which there are sequences $x_n \searrow x, y_n \searrow y$ with $f(x_n, y_n) \ge f(0,0)$ and $\lim_n f(x_n, y_n) = f(x, y)$, and set $V^- := V \setminus V^+$. Note that for any $\langle x, y \rangle \in V^-$, there are $x_n \searrow x, y_n \searrow y$ such that $f(x_n, y_n) < f(0,0)$ and $\lim_n f(x_n, y_n) = f(x, y)$.

Now, define $g: \mathbb{R}^2 \to \mathbb{R}$ by the formula

$$g(x,y) := \begin{cases} f(0,0) + \varepsilon & \text{for } \langle x,y \rangle \in W^+ \cup V^+, \\ f(0,0) - \varepsilon & \text{for } \langle x,y \rangle \in W^- \cup V^-, \\ f(x,y) & \text{for } \langle x,y \rangle \in \mathbb{R}^2 \setminus W. \end{cases}$$

Then obviously, $d(g, f) \leq 2\varepsilon$.

Let us verify that $g \in \text{TFC}$. Since $g(\hat{x}_n, \hat{y}_n) = f(\hat{x}_n, \hat{y}_n)$ for all $n \in \mathbb{N}$, we have $\langle 0, 0 \rangle \in TFC(g)$. For every point $\langle x, y \rangle \notin Z := \{\langle 0, 0 \rangle\} \cup T$ there is a right-hand open square S centered at $\langle x, y \rangle$ and disjoint with Z, so from g = f on $\mathbb{R}^2 \setminus Z$ and $f \in \text{TFC}$ it follows that $\mathbb{R}^2 \setminus Z \subset TFC(g)$. Now, assume that $\langle x, y \rangle \in T$. Since $\langle x, y \rangle \in TFC(f)$, there are $x_n \searrow x$, $y_n \searrow y$ with $\lim_n f(x_n, y_n) = f(x, y)$. We consider a few cases.

1. First, suppose that $|f(x,y) - f(0,0)| > \varepsilon$. Then $|f(x_n, y_n) - f(0,0)| > \varepsilon$ for almost all *n*, hence $g(x_n, y_n) = f(x_n, y_n)$, so $\lim_n g(x_n, y_n) = \lim_n f(x_n, y_n) = f(x, y) = g(x, y)$ and therefore, $\langle x, y \rangle \in TFC(g)$.

2. Suppose that $\langle x, y \rangle \in W^+$. Then $\langle x_n, y_n \rangle \in W^+$ for almost all n, and we have $\lim_n g(x_n, y_n) = f(0, 0) + \varepsilon = g(x, y)$. Similarly, if $\langle x, y \rangle \in W^-$.

3. Now, let $f(x, y) = f(0, 0) + \varepsilon$. Then there is a sequence $i_n \nearrow \infty$ such that either $f(x_{i_n}, y_{i_n}) > f(0, 0) + \varepsilon$ for every n, or $f(x_{i_n}, y_{i_n}) = f(0, 0) + \varepsilon$ for all n, or $\langle x_{i_n}, y_{i_n} \rangle \in W^+$ for each n. In each of such cases $\lim_n g(x_{i_n}, y_{i_n}) = f(0, 0) + \varepsilon = f(0, 0) + \varepsilon = g(x, y)$. Similarly, if $f(x, y) = f(0, 0) - \varepsilon$.

4. Finally, suppose that $\langle x, y \rangle \in V^+$. We may assume that $\langle x_n, y_n \rangle \in W^+ \cup V^+$ for all *n*. Then $\lim_n g(x_n, y_n) = f(0, 0) + \varepsilon = g(x, y)$, hence $\langle x, y \rangle \in TFC(g)$. Similarly, if $\langle x, y \rangle \in V^-$.

Also, g is not very feebly continuous at the point (0,0) by Lemma 4.

Thus the above argument leads to the first assertion stating that TFC \setminus VFC is uniformly dense in TFC. Now, the second assertion follows since VFC is closed by Proposition 3.

PROPOSITION 6. The family FC is not closed in the space $\mathbb{R}^{\mathbb{R}^2}$ with the topology of uniform convergence.

PROOF. Let $\{p_k : k \in \mathbb{N}\}$ be the set of all prime numbers in \mathbb{N} . For any triple $\langle k, i, j \rangle \in \mathbb{N}^3$, let S(k, i, j) denote a right-hand open square in \mathbb{R}^2 centered at the point $\langle \frac{1}{p_k^i}, \frac{1}{p_k^j} \rangle$, $S(k, i, j) := I(k, i, j) \times J(k, i, j)$, where I(k, i, j) and J(k, i, j) are intervals of the form [a, b) with $a, b \in \mathbb{R}$, a < b. We may require that the closures of different intervals J(k, i, j) and J(k', i', j') are disjoint.

For $k \in \mathbb{N}$, define a function $f_k \colon \mathbb{R}^2 \to \mathbb{R}$ as follows

$$f_k(x,y) := \begin{cases} 1 - \frac{1}{k} & \text{for } \langle x, y \rangle \in \{ \langle 0, 0 \rangle \} \cup \bigcup_{n > k} \bigcup_{i,j \in \mathbb{N}} S(n,i,j), \\ 1 - \frac{1}{n} & \text{for } \langle x, y \rangle \in \bigcup_{i,j \in \mathbb{N}} S(n,i,j), \ n \le k, \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that each f_k is feebly continuous. In fact we only need to check that $\langle 0, 0 \rangle \in FC(f)$ but this can be provided by the sequences $(x_n) := \left(\frac{1}{p_k^n}\right)$ and $(y_m) := \left(\frac{1}{p_k^m}\right)$.

Moreover, the sequence (f_k) is uniformly convergent to the function

$$f(x,y) := \begin{cases} 1 & \text{for } \langle x,y \rangle = \langle 0,0 \rangle, \\ 1 - \frac{1}{n} & \text{for } \langle x,y \rangle \in \bigcup_{i,j \in \mathbb{N}} S(n,i,j), \ n \in \mathbb{N}, \\ 0 & \text{otherwise}, \end{cases}$$

which is not feebly continuous at the point $\langle 0, 0 \rangle$.

PROPOSITION 7. The family FC is not uniformly dense in the class VFC.

PROOF. Choose reals r_n , for $n \in \mathbb{N}$, with the following properties:

- $0 < r_n < 1/n$ for every $n \in \mathbb{N}$;
- $\frac{r_n}{r_m} \notin \mathbb{Q}$ for $n \neq m$.

For all $n, m \in \mathbb{N}$, define $x_n := \frac{1}{n}$ and $y_m^{(n)} := \frac{r_n}{m}$, and let S(n,m) be a right-hand open square centered at the point $\langle x_n, y_m^{(n)} \rangle$, S(n,m) := I(n,m) $\times J(n,m)$, where $\operatorname{cl}(J(n,m)) \cap \operatorname{cl}(J(i,j)) = \emptyset$ whenever $\langle n,m \rangle \neq \langle i,j \rangle$. Let $\tilde{f} : \mathbb{R}^2 \to \mathbb{R}$ be the following modification of the function $f : \mathbb{R}^2 \to \mathbb{R}$ from [1, Example 8]:

$$\widetilde{f} := \chi_B$$
, where $B := \{\langle 0, 0 \rangle\} \cup \bigcup_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} S(n, m)$.

Observe that the function \tilde{f} is very feebly continuous, while there is no $g \in \text{FC}$ with $d(g, \tilde{f}) < \frac{1}{2}$.

PROPOSITION 8. The family VFC \setminus FC is uniformly dense in VFC.

PROOF. For given $f \in \text{FC}$ and $\varepsilon > 0$, we will construct $g \in \text{VFC} \setminus \text{FC}$ with $d(f,g) \leq \varepsilon$. Clearly, we may assume that f(0,0) = 0. Since f is feebly continuous at the point $\langle 0, 0 \rangle$, there are sequences $x_n \searrow 0$, $y_m \searrow 0$ with $\lim_n \lim_m f(x_n, y_m) = 0$. Divide the set \mathbb{N} into infinitely many sets which are ordered as increasing sequences $(i_m^k)_m, k \in \mathbb{N}$. Let $y_m^{(n)} := y_{i_m^n}$. For any $n, m \in \mathbb{N}$, let $S(n, m) := I(n, m) \times J(n, m)$ be a right-side open square centered at the point $\langle x_n, y_m^{(n)} \rangle$. We may assume that, for all pairs $\langle i, j \rangle$, $\langle n, m \rangle$ of natural numbers, the following conditions hold:

- (1) if i < n then $\sup I(i, j) < \inf I(n, m)$;
- (2) if j < m then $\sup J(n,m) < \inf J(n,j)$.

Let $S := \{ \langle 0, 0 \rangle \} \cup \bigcup_{n,m} S(n,m)$. Decompose the set $Z := \mathbb{R}^2 \setminus S$ into three parts A_+ , A_- , and A_0 , where

$$A_{+} := Z \cap f^{-1}((0, +\infty)),$$
$$A_{-} := Z \cap f^{-1}((-\infty, 0)),$$
$$A_{0} := Z \setminus (A_{+} \cup A_{-}).$$

Moreover, divide the set A_0 into two subsets A_0^+ and A_0^- where A_0^+ is the set of all points $\langle x, y \rangle \in A_0$ for which there are $s_n \searrow x$, $t_m \searrow y$ such that $f(s_n, t_m) \ge 0$ and $\lim_n \lim_m f(s_n, t_m) = 0$, and let $A_0^- := A_0 \setminus A_0^+$. Note that, if $\langle x, y \rangle \in A_0^-$, then there are $s_n \searrow x$, $t_m \searrow y$ such that $f(s_n, t_m) \in A_0^-$ and $\lim_n \lim_m f(s_n, t_m) = 0$.

Now, we are ready to define the function $g: \mathbb{R}^2 \to \mathbb{R}$. Set

$$g(x,y) := \begin{cases} f(x,y) & \text{for } \langle x,y \rangle \in S, \\ f(x,y) + \varepsilon & \text{for } \langle x,y \rangle \in A_+ \cup A_0^+, \\ f(x,y) - \varepsilon & \text{for } \langle x,y \rangle \in A_- \cup A_0^-. \end{cases}$$

Then g is as we need. Indeed, it is clear that $d(f,g) \leq \varepsilon$. To see that g is very feebly continuous at the point $\langle 0, 0 \rangle$, consider the sequences (x_n) , $(y_m^{(n)})_m$. For every n, $(y_m^{(n)})_m$ is a subsequence of (y_m) , therefore $\lim_m g(x_n, y_m^{(n)}) = \lim_m f(x_n, y_m)$. Hence $\lim_m \lim_m g(x_n, y_m^{(n)}) = \lim_m \lim_m f(x_n, y_m) = f(0, 0) = g(0, 0)$.

Now, we will verify that $\langle 0,0 \rangle \notin FC(g)$. Suppose to the contrary that exist $s_n \searrow 0$, $t_m \searrow 0$ such that $\lim_n \lim_m g(s_n, t_m) = g(0,0) = 0$. We can assume that $|\lim_m g(s_n, t_m)| < \frac{\varepsilon}{2}$. This means that $\langle s_n, t_m \rangle \in \bigcup_{i,j} S(i,j)$, so t_m belongs to infinitely many intervals J(i,j) which is impossible. Finally,

similarly as in the proof of Proposition 5, one can check that g is feebly continuous at each point $\langle x, y \rangle \neq \langle 0, 0 \rangle$.

PROBLEM.

- 1. Is the set VFC\FC residual (non-meager, or Borel) in the space VFC with the topology of uniform convergence?
- 2. Can every Borel (Lebesgue, or Baire) measurable function $f \in VFC$ be a uniform limit of a sequence of Borel (Lebesgue, or Baire) measurable functions from the class VFC \ FC?

References

- M. Balcerzak, T. Natkaniec, and M. Terepeta, Families of feebly continuous functions and their properties, Topology Appl. 272 (2020), 107077, 12 pp.
- [2] Á. Császár and M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), no. 3, 463–472 (1978).
- [3] I. Leader, A note on feebly continuous functions, Topology Appl. 156 (2009), no. 16, 2629–2631.

MAREK BALCERZAK INSTITUTE OF MATHEMATICS LODZ UNIVERSITY OF TECHNOLOGY WÓLCZAŃSKA 215 90-924 ŁÓDŹ POLAND e-mail: marek.balcerzak@p.lodz.pl

Tomasz Natkaniec Institute of Mathematics Faculty of Mathematics, Physics and Informatics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk Poland e-mail: mattn@mat.ug.edu.pl MAŁGORZATA TEREPETA CENTER OF MATHEMATICS AND PHYSICS AL. POLITECHNIKI 11 AND INSTITUTE OF MATHEMATICS WÓLCZAŃSKA 215 LODZ UNIVERSITY OF TECHNOLOGY 90-924 ŁÓDŹ POLAND e-mail: malgorzata.terepeta@p.lodz.pl