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MATHEMATICAL CHALLENGES
IN THE THEORY OF CHEMOTAXIS

Piotr Biler

The XI Annual Lecture dedicated to the memory of Professor Andrzej Lasota

Abstract. We consider the simplest parabolic-elliptic model of chemotaxis
in the whole space and in several space dimensions. Criteria either for the
existence of radial global-in-time solutions or their blowup in terms of suitable
Morrey spaces norms are discussed.

This is an extended version of the lecture presented at the University of
Silesia on January 12, 2018, commemorating Professor Andrzej Lasota — great
scholar, master of fine mathematics and applications to real world.

1. Introduction

We discuss in this paper some intriguing properties of solutions of the
following Cauchy problem in space dimensions d ≥ 2:

ut −∆u+∇ · (u∇v) = 0, x ∈ Rd, t > 0,(1.1)

∆v + u = 0, x ∈ Rd, t > 0,(1.2)

u(x, 0) = u0(x), x ∈ Rd.(1.3)
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There are many motivations to study this seemingly simple diffusion-transport
model. One of them comes from Mathematical Biology, where equations (1.1)–
(1.2) appear as a simplified Keller-Segel(-Patlak) (the, so called, minimal KS)
system modelling chemotaxis, see e.g., the seminal paper [50], overviews [4,
44, 45, 43] and [8, 33, 53, 55, 54]. The unknown variables u = u(x, t) and
v = v(x, t) denote the density of the population of microorganisms (e.g.,
swimming bacteria or slime mold), and the density of the chemical secreted
by themselves that attracts them and makes them to aggregate, respectively.

Another and even earlier important interpretation of system (1.1)–(1.2)
stems from astrophysics, where the unknown function u = u(x, t) is the density
of gravitationally interacting massive particles in a cloud (of molecules, stars,
nebulae, etc.), and v = v(x, t) is the Newtonian potential (“mean field”) of
the mass distribution u, see [34, 35, 5, 7, 6, 18]. Note that similar mean field
models, with + sign in equation (1.2) replaced by − sign have been used for
more than one century to model migration of electrically charged particles
in electrolytes, plasma and semiconductors, see e.g., [37] and [16] for further
references.

The initial data (1.3) are nonnegative integrable functions u0 ∈ L1(Rd).
The total mass M =

∫
u0(x) dx =

∫
u(x, t) dx ∈ [0,∞) is conserved during

the evolution. Further, we will also consider solutions with infinite mass like
the famous Chandrasekhar steady state singular solution in [34] related to
black holes

(1.4) uC(x) =
2(d− 2)

|x|2
.

In fact, a more realistic description of chemotaxis phenomena for biologists
needs more complicated models involving nonlinear diffusion, growth and re-
action terms and nonlinear sensitivity functions like (here ϕ ≡ v)

ut = ∇ · (D(u)∇u− u∇χ(ϕ)) + g(u, ϕ),

εϕt = ∆ϕ+ u+ h(u, ϕ),

where, for instance,

ε ≥ 0, D(u) = duν , D(u) � u(1 + uλ),

χ(ϕ) = c logϕ, χ(ϕ) = cϕκ, χ(ϕ) =
ϕ

c+ ϕ
,

g(u, ϕ) = µu(1− u); h(u, ϕ) = −γϕ, . . .
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Another class of biologically relevant models appear with the following choice
for the first equation

ut = ∇ · (D(u)∇u− uh(u)∇ϕ),

where D(s) = h(s)− sh′(s). The literature on these subjects is abundant and
fast growing.

We will concentrate on the simplified system (1.1)–(1.2) which deserves a
deep analysis by mathematicians since this features many interesting behav-
iors of solutions.

This is a review paper, a potpourri of some old results, some new, with no
proofs — except for a sketch of one being an application of a classical idea of
H. Fujita [38] to radial solutions of chemotaxis systems.

The system (1.1)–(1.2) has a variational structure, so that the quantity
(of a clear physical origin of “entropy” or “free energy”)

W (t) =

∫
u log udx− 1

2

∫
uϕdx

is a Lyapunov functional

d

dt
W = −

∫
u |∇ log u−∇ϕ|2 dx ≤ 0.

However, unlike the authors of [3, 32, 30], we had not used that subtle property
in the proofs of our results presented here.

Finally, it should be noted that similar phenomena take place and can be
proved for nonnegative solutions (not necessarily radial) of the nonlinear heat
equation

ut = ∆u+ up.

A general reference is the monograph [61], and recent results are in [63, 10, 11].

2. The 8π-problem in the two-dimensional case

Let us now describe previous results which motivated us to start this study
and we limit ourselves to those publications, which are directly related to that
topic.

We begin with the classical case of d = 2 where the value M = 8π of mass
plays a crucial role. Namely, if u0 is a nonnegative measure of mass M < 8π
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(the subcritical case), then there exists a unique solution which is global-
in-time and bounded (see, e.g., [3, 32, 28]) and its asymptotics is essentially
selfsimilar in space-time. These results have been known previously for radially
symmetric initial data, see [21, 22, 9, 24, 25] for recent presentations.

On the other hand, if M > 8π (the supercritical case), then this solution
cannot be continued to a global-in-time regular one, and a finite time blowup
occurs

lim sup
t↗T, x∈Rd

u(x, t) =∞ for some 0 < T <∞.

The first proof of blowup was in [47], then [27, 18, 6, 9, 56, 52] appeared, and
constructions of blowing up radial solutions have been presented in [41, 42].
The radial blowup is accompanied by the concentration of mass equal to 8π
at the origin.

The book [64] is devoted to a fine description of solutions at the blowup
time, in particular there is a quantization of mass property presented: the
local singularities of blowing up solutions eventually grow to integer multiples
of 8π.

These phenomena are closely related to the question of local solvability of
the Cauchy problem for system (1.1)–(1.2) under minimal regularity on the
initial data u0 ≥ 0 in (1.3). Namely, if u0 is a nonnegative measure then local
in time solution exists if and only if all the atoms of u0 have mass less than
8π, see [3] and [28] for much simpler argument.

The critical case M = 8π is rich in fine asymptotic behavior results (see
[31, 30]) even in the radially symmetric case. And the case of a ball [49,
21] is quite different from the case of the whole plane in [22]. The study
of radially symmetric solutions of system (1.1)–(1.2) can be reduced to a
nonlinear equation which is no longer nonlocal

(2.1) Mt = 4 sMss +
1

π
M Ms

for the nondecreasing radial distribution function

(2.2) M(r, t) =

∫
{|x|<r}

u(x, t) dx,

after the change of variables s = r2. Similarly, for d ≥ 3 and s = rd equation

(2.3) Mt = d2s2−2/dMss +
d

σd
MMs
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appears with

(2.4) σd =
2π

d
2

Γ
(
d
2

)
denoting the area of the unit sphere Sd−1 in Rd. These equations feature
nonuniform diffusion coefficients s2−2/d and simple nonlinear terms (as in
the Burgers equation corresponding to d = 1 case of (2.3) with the uniform
diffusion coefficient). Equation (2.1) has infinite number of steady states given
by formula

Mb(s) = 8π
s

s+ b
, b > 0,

having the property∫ ∞
0

(8π −Mb(s)) ds =∞ for b > 0.

They are locally asymptotically stable which is shown by considering relative
entropy functionals

Wb(M) =

∫ (
M log

M

Mb
+ (8π −M) log 8π −M8π −Mb

)
ds,

Wb(M0) <∞ =⇒ lim
t→∞

‖M(t)−Mb‖L1(0,R) = 0 for each R > 0,

as in [22]. But the global dynamics picture is much more complicated; there are
solutions which diffuse mass to infinity, so that M(r, t) → 0 as t → ∞, solu-
tions with an infinite time blowup that concentrate at the origin:M(r, t)→ 8π
for all r > 0 as t → ∞, and solutions that oscillate (“bounce”) between two
different steady states Mb, see [58].

The doubly parabolic case of Keller-Segel system, i.e., equation (1.1) sup-
plemented with the linear parabolic diffusion equation for ϕ

(2.5) εϕt = ∆ϕ+ u

instead of (1.2), is even more difficult to study, especially when blowup ques-
tions are considered. A striking difference of its behavior is, e.g., result in [15].
Namely, selfsimilar solutions satisfying scaling property

u(x, t) = t−1U(xt−1/2), ϕ(x, t) = Φ(xt−1/2),
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exist for each 0 ≤ M < Mε with the optimal value of Mε = 8π whenever
0 ≤ ε ≤ 1

2 , while limε→∞Mε =∞. These are solutions of the Cauchy problem
(1.1)–(1.2) with u0 = Mδ0, nonunique if M > 8π.

The role of consumption term γϕ in the modified equation (2.5) for the
chemoattractant εϕt = ∆ϕ − γϕ + u is discussed in [17] for two-dimensional
doubly parabolic model (together with the dependence on diffusivity coeffi-
cient ε > 0) and in [14] in the parabolic-elliptic case (ε = 0). Namely, for each
initial condition there is ε0 = ε(u0) such that for ε ≥ ε0 (γ0 = γ(u0) and for
γ ≥ γ0, resp.) solution with u0 as the initial datum is global in time.

3. Parabolic-elliptic model in higher dimensions

In view of results in the two-dimensional case mentioned above (when the
parameter of total mass M plays decisive role in the temporal behavior of
solutions), for d ≥ 3 we are looking for a critical quantity ˜̀ = ˜̀(u0) which
decides about the blowup. More precisely, do there exist constants 0 < c(d) ≤
C(d) such that ˜̀(u0) < c(d) implies global-in-time existence of solution to
(1.1)–(1.2) while ˜̀(u0) > C(d) leads to a finite time blowup of solution? We
will give an answer to that dichotomy question in Corollary 5.4, showing that
˜̀ is close to the radial concentration — and thus equivalent to the Morrey
norm in the space Md/2(Rd). A generalization to the case of the dissipation
defined by a fractional power of Laplacian (−∆)α/2 with α ∈ (1, 2) is in a
forthcoming paper [20], showing that ˜̀ is close to the Morrey norm in the
space Md/α(Rd). Here, the radial concentration of a locally integrable radial
function u ≥ 0 is defined by

|||u||| = sup
R>0

R2−d
∫
{|y|<R}

u(y) dy.

The homogeneous Morrey spaces of measures on Rd are defined by their norms

||u||Mp ≡ sup
R>0, x∈Rd

Rd(1/p−1)

∫
{|y−x|<R}

|u(y)|dy <∞.

Clearly, |||u||| ≤ ||u||Md/2 but in fact these quantities are equivalent for d ≥ 3,
see [26, Lemma 7.1] as well as [1, Lemma 3.1].
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Main new results

Our main results obtained recently include:
• global-in-time existence of radially symmetric solutions with initial data in
the critical Morrey space Md/2(Rd) whose initial conditions are uniformly
below the singular solution uC in (1.4) in an averaged sense, Theorem 4.1
below, together with their convergence to 0 as t→∞;
• sufficient conditions on the radial initial data which lead to a finite time
blowup of solutions, expressed in terms of quantities related to the Morrey
space norm Md/2(Rd), Theorem 5.1; for instance, condition (5.7):

sup
T>0

T eT∆u0(0) > C(d)

(here, eT∆ denotes the heat semigroup on Rd) is sufficient for the blowup
of solution with the initial condition u0;
• a perturbation result on convergence of a solution u(t) to uC as t → ∞
studied via the hypercontractivity property of the semigroup linearized at
uC in high dimensions d ≥ 15 (in the radial case), and for d ≥ 17 (with
neither symmetry nor sign assumptions) in Section 6.
The proof of the first result involves a pointwise argument, a powerful tool

used in different contexts such as free boundary problems and fluid dynamics,
cf. also [10] for the case of a nonlinear heat equation. A sufficient condition
for the global-in-time existence is, in fact, an estimate of the Morrey space
Md/2(Rd) norm of the initial condition (modulo a mild regularity assumption).

For the proof of the second result, we revisit a classical argument of H.
Fujita (applied to the nonlinear heat equation in [38]) and reminiscent of ideas
in [33]. This leads to a sufficient condition for blowup of radially symmetric
solutions of system (1.1)–(1.2), with a significant improvement compared to
[26] where local moments have been employed. Then, we derive as corollaries
of condition (5.7) other criteria for blowup of solutions of (1.1)–(1.3).

Remark 5.3 deals with the initial trace of a nonnegative solution of the
Keller-Segel system, and again the Morrey space Md/2(Rd) norm enters as
a critical quantity which measures the minimal regularity of the initial data
needed for the existence of a local-in-time solution of that system.

Local- and global-in-time solutions

It is well-known that problem (1.1)–(1.3) has a unique local-in-time mild
solution u ∈ C([0, T );Lp(Rd)) for every u0 ∈ Lp(Rd) with p > d/2, see
[5, 48, 51]. For solvability results in other functional spaces like weak Lebesgue
(Marcinkiewicz), Morrey and Besov spaces, see also [13, 36, 48, 53] where
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the classical Fujita–Kato iterations procedure for construction of mild so-
lutions is used. Mild solutions are those which are weakly continuous in t:
u ∈ Cw([0, T );Md/2(Rd) ∩Mp(Rd)) and satisfy the Duhamel formula

(3.1) u(t) = et∆u0 + B(u, u)(t).

Above, et∆ denotes the heat semigroup on Rd, and the bilinear form B is
defined by

B(u,w)(t) =

∫ t

0

∇e(t−s)∆(u∇(−∆)−1w)(s) ds.

Here, we consider arbitrary sign changing and not necessarily radially sym-
metric solutions. A new result in this spirit is below, with its proof similar to
reasonings in [5, Proposition 1, Theorem 1] based on the Morrey space norms
counterparts of the Lp−Lq estimates for the heat semigroup in, e.g., [65] and
[39]. Note that, in general, we have only weak convergence of et∆u0 to the
initial data u0 ∈ Mp(Rd) while u(t) is norm continuous for t ∈ (0, T ). Thus,
we are obliged to consider weakly continuous (Cw) instead of more natural
norm continuous (C) functions.

Proposition 3.1 ([23]).
(i) Given u0 ∈ Md/2(Rd) ∩Mp(Rd) with d ≥ 2 and p ∈

(
d
2 , d
)
, there exist

T = T (u0) > 0 and a unique local-in-time solution

u ∈ Cw([0, T ],Md/2(Rd) ∩Mp(Rd))

of problem (1.1)–(1.3) in the sense of (3.1).
(ii) Moreover, if u0 ∈ Md/2(Rd) is sufficiently small then T can be chosen

arbitrarily large so that the solution is global-in-time:

u ∈ Cw([0,∞),Md/2(Rd))

and enjoys the decay and regularity property supt>0 t
β||u(t)||Mr < ∞ for

r > d and β = d
2

(
1
p −

1
r

)
.

The second assumption u0 ∈Mp, with some p > d/2, is a kind of regularity
assumption that rules out local singularities stronger than or equal to 1

|x|2 .
Indeed, 1I{|x|<R}uC 6∈Mp(Rd) while 1I{|x|>R}uC ∈Mp(Rd).
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Similarly as in previous works, the existence of global-in-time solutions
with small data is shown in critical spaces, i.e., those which are scale-invariant
under the natural scaling (see, e.g., [5, 13, 48, 53])

uλ(x, t) = λ2u(λx, λ2t) for each λ > 0.

A much more technical reasoning, that involves Morrey spaces modelled on
weak-Lebesgue (i.e. Marcinkiewicz) spaces (see [53]), shows that small initial
conditions in Md/2(Rd) also lead to global in time solutions. Caution: even
local solutions cannot evolve from (very) big data with singularities in the
space Md/2(Rd), and for data of intermediate size in Md/2(Rd) the Cauchy
problem is ill-posed. For instance, there is no property of continuity with
respect to the initial data, see [26, 29].

We skip the discussion of an interesting structure of steady states and
selfsimilar solutions referring the readers to [7, 5, 8] and to a synthesis in [23,
Appendices].

Blowup in higher dimensions

First proofs of blowup of solutions appeared in [47, 27, 18, 6, 7, 56, 57].
If d ≥ 3, a sufficient condition for blowup for a (not necessarily radial) initial
condition is that u0 is highly concentrated, namely

(3.2)
(∫

Rd |x|
γu0(x) dx∫

Rd u0(x) dx

) d−2
γ

≤ c̃d,γM

for some 0 < γ ≤ 2 and a (small, explicit) constant c̃d,γ > 0, see [19, (2.4)].
Since

||u0||Md/2 ≥ C̃d,γM
(

M∫
Rd |x|γu0(x) dx

) d−2
γ

for some constant C̃d,γ > 0 and all u0 ∈Md/2 ∩L1, see [19, (2.6)], this means
that the Morrey space Md/2 norm of u0 satisfying (3.2) is (very!) large:

||u0||Md/2 ≥
C̃d,2
c̃d,2

.

According to [6], c̃d,2 =
(
2d/2dσd

)−1
and C̃d,2

c̃d,2
=
(
d−2
d

)d/2−1
2d/2σd ≈ 2d/2

e σd.
Recently, some new results on the blowup of solutions to problem (1.1)–

(1.3) appeared in [24, 25, 14, 26] with some new proofs involving localmomenta
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(as in [52]) of (most frequently) radial solutions, and with improved sufficient
conditions in terms of the initial datum u0. A different kind of blowup (of the
Fourier transform of solution) was observed in [12].

4. Continuation of radially symmetric solutions with moderate
size in the critical Morrey space Md/2(Rd) norm

The main result in this direction is

Theorem 4.1 ([26]). If a radially symmetric initial condition u0 ∈
Md/2(Rd) ∩Mp(Rd) with some p ∈

(
d
2 , d
)
satisfies |||u0||| < 2σd, that is

sup
R>0

R2−d
∫
{|x|<R}

u0(x) dx < 2σd ≡ R2−d
∫
{|x|<R}

uC(x) dx,

then each solution u of problem (1.1)–(1.3) such that R2−d ∫
{|x|<R} u(x, t) dx ∈

C2((0, T )×R2), can be continued to a global-in-time one, satisfying the bound

|||u(t)||| = sup
R>0

R2−d
∫
{|x|<R}

u(x, t) dx < 2σd for every R > 0, t > 0.

Moreover,

|||u(t)||| = lim
t→∞

R2−d
∫
{|x|<R}

u(x, t) dx→ 0 as t→∞.

For d ≥ 6 and |||u0||| < 2σd, the L2 estimate: d
dt‖u‖

2
2+µ‖∇u‖22 ≤ 0 holds. If,

additionally, |||u(t)||| ≤ ε2σd for some 0 < ε < d−2
d , then also lim

t→∞
‖u(t)‖p = 0

for p satisfying d
2 < p < d−2

2ε .

The assumption on u0 in Theorem 4.1 reads in terms of the concentration
(and thus the Morrey spaceMd/2(Rd) norm): |||u0||| < ε2σd for some ε ∈ (0, 1).
Notice that ||uC ||Md/2 = |||uC ||| = 2σd for the Chandrasekhar solution (1.4) so
that this singular solution has a regular, bounded (even the constant one)
auxiliary function

z(r, t) = r2−dM(r, t).
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Here, the radial distribution function M = M(r, t) of a radial solution u =
u(x, t) is defined in (2.2) so that M satisfies the equation (equivalent to equa-
tion (2.3))

∂M

∂t
= Mrr −

d− 1

r
Mr +

1

σd
r1−dMMr,

cf. e.g. [18], and for the radial function u the equality u(x) = 1
σd
r1−d ∂

∂rM(r)

is satisfied for each |x| = r.
Note that for d = 2 this theorem gives a nonoptimal result: the global-in-

time existence for M < 4π rather than for the optimal range M < 8π.

5. Solutions blowing up in a finite time

We will revisit the classical proof of blowup for the nonlinear heat equation
in the seminal paper [38] by H. Fujita, and improve the sufficient conditions
for the blowup mentioned before in Section 2, cf. [29].

The key observation is that for a radially symmetric function u ∈ L1
loc(Rd)

and v = Ed ∗u with E2(x) = − 1
2π log |x| and Ed(x) = 1

(d−2)σd
|x|2−d for d ≥ 3,

solving the Poisson equation ∆v + u = 0, the identity

(5.1) ∇v(x) · x = − 1

σd
|x|2−d

∫
{|y|≤|x|}

u(y) dy

holds as a consequence of the Gauss theorem. Indeed, for the distribution
function M of u, we have

M(R) ≡
∫
{|y|≤R}

u(y) dy = −
∫
{|y|=R}

∇v(y) · y
|y|

dS.

Thus, for the radial function ∇v(x) · x|x| and |x| = R, we obtain the required
identity

∇v(x) · x =
1

σd
R2−d

∫
{|y|=R}

∇v(y) · y
|y|

dS = − 1

σd
R2−dM(R).

Now, we proceed to apply a classical idea of blowup proof of Fujita.
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Theorem 5.1. Let d ≥ 2. If the inequality T eT∆u0(0) > C(d) holds with
an explicit constant C(d) ∈ [1, 2), see (5.5) below, then every radial (either
classical or weak) solution of problem (1.1)–(1.3) blows up not later than t = T ,
i.e., limt↗T ‖u(t)‖∞ =∞.

Proof. For a fixed T > 0 consider the weight function G = G(x, t),
x ∈ Rd, t ∈ [0, T ), which solves the backward heat equation with the unit
measure as the final time condition

Gt + ∆G = 0, G(., T ) = δ0.

Clearly, we have a (unique nonnegative) solution

G(x, t) = (4π(T − t))− d2 exp

(
− |x|2

4(T − t)

)
,

defined by the Gauss-Weierstrass kernel, satisfying
∫
G(x, t) dx = 1, and more-

over,

∇G(x, t) = − x

2(T − t)
G(x, t).

Define for a solution u of (1.1)–(1.2), which is supposed to exist on [0, T ), the
moment

W (t) =

∫
G(x, t)u(x, t) dx.

Since G decays exponentially fast in x as |x| → ∞, the moment W is well
defined even for a wider class of solutions u = u(x, t) polynomially bounded
in x.

The evolution of the moment W is governed by the differential identity

dW

dt
=

∫
Gut dx+

∫
Gtudx

=

∫
(∆u−∇ · (u∇v))G dx−

∫
∆Gudx

=

∫
∆Gudx+

∫
u∇v · ∇G dx−

∫
∆Gudx

= − 1

2(T − t)

∫
u∇v · xG dx

=
1

2σd(T − t)

∫
u(x, t)M(|x|, t)|x|2−dG(x, t) dx(5.2)
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=
σd

2σd(T − t)

∫ ∞
0

1

σd
Mr(r, t)r

1−dM(r, t)r2−dG(r, t)rd−1 dr

=
1

2σd(T − t)

∫ ∞
0

MrMr2−dG dr

= − 1

4σd(T − t)

∫ ∞
0

M2(r2−dG)r dr

=
1

4σd(T − t)

∫ ∞
0

M2r1−d
(

(d− 2) +
r2

2(T − t)

)
G dr,

where we used the radial symmetry of the solution u in (5.2), identity (5.1)
and, of course, the radial symmetry of G.

Expressing the moment W in the radial variables we obtain

W (t) = σd

∫ ∞
0

1

σd
Mrr

1−dGrd−1 dr = −
∫ ∞

0

MGr dr(5.3)

=

∫ ∞
0

M
r

2(T − t)
G dr.

Now, applying the Cauchy inequality to the quantity (5.3), we get

W 2(t) =

(∫ ∞
0

M
r

2(T − t)
G dr

)2

≤
∫ ∞

0

M2r1−d
(

(d− 2) +
r2

2(T − t)

)
G dr(5.4)

× 1

2(T − t)

∫ ∞
0

rd+1G

r2 + 2(d− 2)(T − t)
dr.

Returning to the time derivative of W in equation (5.2), we arrive at the
differential inequality

dW

dt
≥ 1

4σd(T − t)
W 2(t)

(∫ ∞
0

rd+1

2(T − t)
G

r2 + 2(d− 2)(T − t)
dr

)−1

=
π
d
2

8σd
W 2(t)

(∫ ∞
0

%d+1(2(d− 2) + 4%2)−1e−%
2

d%

)−1

,

where % = r
2(T−t)1/2 . Recalling (2.4), we denote

(5.5) C(d) =
16

Γ
(
d
2

) ∫ ∞
0

%d+1(2(d− 2) + 4%2)−1e−%
2

d%.
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Clearly, C(2) = 2, and C(d) < 2 for d ≥ 3, since we have

C(d) <
16

Γ
(
d
2

) ∫ ∞
0

1

4
%d−1e−%

2

d% =
4

Γ
(
d
2

) 1

2

∫ ∞
0

τ
d
2−1e−τdτ = 2.

Thus, we finally obtain

dW

dt
≥ 1

C(d)
W 2(t),

which, after an integration, leads to

(5.6) W (t) ≥
(

1

W (0)
− t

C(d)

)−1

.

Now, it is clear that if initially

(5.7) W (0) = eT∆u0(0) >
C(d)

T

is satisfied, then lim sup
t↗T

W (t) = ∞, which means that lim sup
t↗T, x∈Rd

u(x, t) = ∞

and completes the proof. �

Note that the blowup rate is such that lim inft↗T (T − t)W (t) > 0. For
other results on blowup rates (e.g., a faster blowup, i.e., of the II type), see
[40, 55, 54].

Observe that the equality in the Cauchy inequality (5.4) holds if and only if

0 ≤M(r, t) =
A(t)rd

r2 + 2(d− 2)(T − t)
= (T − t) d2−1 A(t)2d%d

4%2 + 2(d− 2)

with some A(t) ≥ 0. Consequently, inequality (5.6) becomes

(5.8) W (t) =

(
1

W (0)
− t

C(d)

)−1

,

and if d ≥ 3

W (0) =
1

2T

∫ ∞
0

A(0)rd+1

r2 + 2(d− 2)T
e−r

2/(4T )(4πT )−
d
2 dr

=
A(0)

T

Γ
(
d
2

)
8π

d
2

C(d) ≥ C(d)

T
,
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then the solution blows up not later than T . This holds exactly when A(0) ≥
4σd. This solution (cf. [33, (33)]) satisfies identity (5.8) with W (0) = C(d)

T ,
and is, in a sense, a kind of the minimal smooth blowing up solution, i.e., it
gives a lower bound on blowing up solutions. So, we have an explicit example
of blowing up solution with infinite mass

M(r, t) =
4σdr

d

r2 + 2(d− 2)(T − t)

whose density approaches 4(d−2)
|x|2 = 2uC(x), i.e., twice the singular stationary

solution, when t ↗ T , so that the density of the solution becomes infinite at
the origin for t = T . The corresponding initial density is, of course,

u0(x) = 4(d− 2)
r2 + 2T

(r2 + 2(d− 2)T )2
,

||u0||Md/2 = 4σd = lim
r→∞

r2−dM(r, t) = ||u(t)||Md/2 .

We give below some other examples of initial data leading to a finite time
blowup of solutions.

Remark 5.2. Observe that for each initial condition u0 6≡ 0 there is N > 0
such that condition (5.7) is satisfied for Nu0.

Clearly, by |||uC ||| = ||uC ||Md/2 = 2σd, for each η > 2 the solution with the
initial condition u0 = ηuC blows up. Moreover, for each η > 2 and sufficiently
large R = R(η) > 1 the bounded initial condition of compact support u0 =
η1I{1≤|x|≤R}uC leads to a blowing up solution, see (5.7). The singularity of
that solution at the blowing up time is ∼ 1

|x|2 at the origin. It seems that the
latter result cannot be obtained applying previously known sufficient criteria
for blowup like (3.2).

On the other hand, the initial data like min{1, uC} + εψ with a smooth
nonnegative, compactly supported function ψ and a sufficiently small ε > 0
(they are somewhere above the critical uC pointwisely) lead to global-in-time
solutions according to Theorem 4.1.

Sufficient conditions for blowup for radial u0 ≥ 0 mentioned above
− supt>0 te

t∆u0(0)� 1,
− supt>0 t

∥∥et∆u0

∥∥
∞ � 1,

− |||u0||| ≡ supr>0 r
2−d ∫

{|x|<r} u0(x) dx� 1,
− ||u0||Md/2 ≡ supr>0, x∈Rd r

2−d ∫
{|y−x|<r} u0(y) dy � 1,
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are mutually equivalent. Note that, however, some of these equivalences are
rather nontrivial and the comparison constants for pairs of those quantities
strongly depend on d.

Remark 5.3 (Initial traces). One can show, along the lines of the rea-
sonings in [1, (1.4), Proposition 4.3], that for d ≥ 3 each nonnegative ra-
dial solution u on Rd × (0, T ) of system (1.1)–(1.2) has the initial trace,
that is, u0 = limt↘0 u(t) exists in the sense of weak convergence of mea-
sures. Moreover, u0 is uniformly in L1

loc(Rd), and the solution u(t) satis-
fies the uniform bound in the local Morrey space Md/2

loc , i.e., ||u(t)||
M
d/2
loc

≡
sup0<r<1, x∈Rd r

2−d ∫
{|y−x|<r} |u(y, t)| ≤ J(d) < ∞ for all t ∈ (0, T ). This,

supplemented with Corollary 5.4 below, shows that the spaces Md/2(Rd) are
nearly the optimal ones with respect to the local- and global-in-time solvabil-
ity of system (1.1)–(1.2).

Thus, our results for radially symmetric solutions (which we suppose to
exist) can be summarized in the following dichotomy result.

Corollary 5.4.
(i) If u0 is such that |||u0||| < 2σd then the solution of problem (1.1)–(1.3) is

global-in-time ([23]);
(ii) if u0 is such that T eT∆u0(0) > 2 (which is the case if either u0(x) >

2uC(x) pointwise for each x ∈ Rd \ {0}, or by [29, Proposition 4.6],
guaranteed by, e.g., |||u0||| > 2

√
πd2σd, asymptotically as d → ∞, so for

one R0 > 0: R2−d
0

∫
{|x|<R0} u0(x) dx > 2

√
πd2σd), then the solution of

problem (1.1)–(1.3) blows up not later than at t = T .

6. Hypercontractivity properties

A (proto)typical result in this direction is the following.

Theorem 6.1. Assume that d ≥ 15. Suppose that u(x, t) is a global-in-
time radial solution satisfying 0 ≤ u(x, t) ≤ uC(x) for all x ∈ Rd and t ≥ 0.
There exists 1 < p0 < 2 such that if uC − u0 ∈ L2(Rd) ∩ Lp(Rd) with some
p ∈ (p0, 2), then

‖uC − u(t)‖2 ≤ ‖uC − u0‖2
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and

‖uC − u(t)‖2 ≤ C(p, d)t−
d
2 ( 1
p−

1
2 )‖uC − u0‖p

for all t > 0 and a number C(p, d) independent of t and u.

The question of the existence of solutions with 0 ≤ u(x, t) ≤ uC(x) is
nontrivial, and the proof involves an approximation procedure by solutions
like those in Proposition 3.1 and Theorem 4.1.

To prove Theorem 6.1 we need a few ingredients including the hypercon-
tractivity of the semigroup of linear operators e−tL describing the evolution in
vicinity of the singular solution uC , and a perturbation result, cf. an analogous
scheme in [60, 59] in the case of nonlinear heat equations.

Here, we sketch the first part of those constructions. We consider the
linearization of problem (1.1)–(1.3), and we substitute w(x, t) = uC(x) −
u(x, t), ∆ϕC + uC = 0 to (1.1) to get

wt = ∆w −∇ · (uC∇ϕ)−∇ · (w∇ϕC) +∇ · (w∇ϕ),(6.1)

∆ϕ+ w = 0,

w(x, 0) = w0(x).

Let us define the linear differential operator

(6.2) Lw = −∆w +∇uC · ∇ϕ− uCw +∇ · (w∇ϕC).

In the following, we study properties of the operator L, see an analogous
approach in [59, 60] for nonlinear heat equations.

Lemma 6.2.
(i) Assume that d ≥ 15. Then there exists a constant λ > 0 such that the

operator L defined in (6.2) satisfies the following inequality

(6.3) 〈Lw,w〉 ≥ λ‖∇w‖22

for all radial functions w ∈ H1(Rd).
(ii) Assume that d ≥ 17. Then inequality (6.3) holds for another λ > 0 and

each w ∈ H1(Rd).
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(i) This is a consequence of the identity

〈Lw,w〉 = ‖∇w‖22 +

∫
Rd
∇uC · ∇ϕw dx− 3

2

∫
Rd
uCw

2 dx

= ‖∇w‖22 − 4(d− 2)

∫
Rd

x

|x|4
· ∇ϕw dx− 3(d− 2)

∫
Rd

w2

|x|2
dx(6.4)

obtained by multiplying equation wt+Lw = 0 by w and integrating by parts.
Then, the Hardy inequality (cf. [2])

(d− 2)2

4

∥∥∥∥ f|x|
∥∥∥∥2

2

≤ ‖∇f‖22,

and positivity of the middle term for radial functions w of arbitrary sign
(which is a rather subtle property) prove inequality (6.3) if 1− 12

d−2 > 0, i.e.,
d ≥ 15, holds.

(ii) An alternative approach to the property of hypercontractivity of the
linearization operator L is obtained by estimating the middle term in formula
(6.4) ∣∣∣∣4(d− 2)

∫
x

|x|4
· ∇ϕw dx

∣∣∣∣ ≤ 4(d− 2)

∫
|∇ϕ|
|x|2

|w|
|x|

dx

≤ 4(d− 2)
4

d(d− 4)

2

d− 2
‖∇w‖22

by the Hardy inequality, and then by the Rellich inequality

d2(d− 4)2

16

∥∥∥∥ f

|x|2

∥∥∥∥2

2

≤ ‖∆f‖22,

see [2, (6), (6.2.3)]. To conclude, observe that 32
d(d−4) < 1 − 12

d−2 is valid for
d ≥ 17.

Then, e−tL is shown to be a holomorphic semigroup on L2(Rd). The other
ingredients of the proof are technical and include global existence for quadratic
perturbation (6.1), decay estimates based on the properties of the semigroup
e−tL, etc.
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