
Annales Mathematicae Silesianae 32 (2018), 5–41
DOI: 10.1515/amsil-2017-0019

MATHEMATICAL MODELS FOR DYNAMICS
OF MOLECULAR PROCESSES

IN LIVING BIOLOGICAL CELLS
A SINGLE PARTICLE TRACKING APPROACH

Aleksander Weron

The X Annual Lecture dedicated to the memory of Professor Andrzej Lasota

Abstract. In this survey paper we present a systematic methodology of how
to identify origins of fractional dynamics. We consider three models leading to
it, namely fractional Brownian motion (FBM), fractional Lévy stable motion
(FLSM) and autoregressive fractionally integrated moving average (ARFIMA)
process. The discrete-time ARFIMA process is stationary, and when aggre-
gated, in the limit, it converges to either FBM or FLSM. In this sense it
generalizes both models. We discuss three experimental data sets related to
some molecular biology problems described by single particle tracking. They
are successfully resolved by means of the universal ARFIMA time series model
with various noises. Even if the finer details of the estimation procedures are
case specific, we hope that the suggested checklist will still have been of great
use as a practical guide. In Appendices A–F we describe useful fractional dy-
namics identification and validation methods.
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1. Introduction

According to E. P. Wigner − the Nobel Prize winner in Physics 1963 It
is important to point out that the mathematical formulation of the physicists
often crude experience leads in an uncanny number of cases to an amazingly
accurate description of a large class of phenomena ([80]).

The Nobel Prize in Physiology or Medicine 2009 was awarded for the
discovery of how chromosomes are protected by telomeres and the enzyme
telomerase. The Nobel Prize in Chemistry 2012 was given for studies of G-
protein-coupled receptors. And the Nobel Prize in Chemistry 2014 was pre-
sented for the development of superresolved fluorescence microscopy. Defi-
nitely, the research behind these three Nobel Prizes - awarded within a short
five year period - have caused a dramatic increase of experimental and theo-
retical achievements in the study of living cells around the world. Ultimately
the accessibility of quantitative data prompted many physicists and applied
mathematicians to turn their attention to the study of single biological cells
and the physiological processes running off therein. In the spirit of the above
citation of Eugene Wigner, this involvement of physicists and mathematicians
has led to a new level of understanding of biological systems. Very recently,
the creation of Quantitative Biology sections in the life sciences, hiring physi-
cists and mathematicians in their departments, provides a good mirror of this
development.

In this context let us recall that probably Professor Hugo Steinhaus was
a first Polish mathematician working actively on specific problems of biology
and medicine. He published a series of articles on: garniture pattern of leuco-
cytes ([25]) or arrangement of chromosomes in human cells, on distribution of
telomeres, centromeres and orientation of chromosomes in the metaphase ([45]
and [46]). In a similar spirit Professor Andrzej Lasota, as a versatile mathe-
matician, was interested in the application of existing mathematical tools to
biological and medical problems. A spectacular example is his series of articles
on a mathematical model of blood cell reproduction and scientific cooperation
with Professor Maria Ważewska-Czyżewska who applied those results in the
treatment of certain types of drug-induced anemia ([50]).

A phenomenon observed in recent single-molecule experiments is anoma-
lous diffusion, which largely departs from the classical Brownian diffusion
theory since the mean-squared displacement (MSD) is nonlinear. The most
popular theoretical models that are commonly employed are: continuous-time
random walk (CTRW) ([62]), obstructed diffusion (OD) ([33, 65]), fractional
Brownian motion (FBM) ([32, 10]), fractional Lévy α-stable motion (FLSM)
([15]), fractional Langevin equation (FLE) ([44]) and autoregressive fraction-
ally integrated moving average (ARFIMA) (see [14] and references therein).
For the latter process, we note that the acronyms “ARFIMA” and “FARIMA”
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are often used interchangeably in the literature. Yet another popular anoma-
lous diffusion models have to be mentioned, for example those related to
fluorescence recovery after photobleaching (FRAP): time-dependent diffusion
coefficient model ([66, 70]) and scaled Brownian motion ([51, 27]).

Traditionally, fractional dynamics is related to the concept of fractional dy-
namic equations. This is an active field of study in physics, mechanics, mathe-
matics, and economics, investigating the behaviour of objects and systems that
are described by using differentiation of fractional orders. The celebrated frac-
tional Fokker–Planck equation (FFPE) corresponding to the popular CTRW
model, describing anomalous diffusion in the presence of an external potential
V (x), is given by the following formula

(1.1)
∂w(x, t)

∂t
= 0D

1−α
t

[
∂

∂x

V ′(x)

η
+K

∂2

∂x2

]
w(x, t).

It was derived explicitly in [61, 1], where methods of its solution were in-
troduced and for some special cases exact solutions were calculated. Here,
the operator 0D

1−α
t , α ∈ (0, 1), is the fractional derivative of the Riemann–

Liouville type ([64]). It is known that 0D
1−α
t introduces a convolution in-

tegral with a slowly decaying power-law kernel, which is typical for memory
effects in complex systems ([71]). In (1.1), w(x, t) denotes the probability den-
sity function (PDF) and the prime (’) stands for the derivative with respect
to the space coordinates relating the force F (x) and the potential through
F (x) = −V ′(x). The constant K denotes the anomalous diffusion coefficient,
whereas η is the generalized friction constant. For α → 1, (1.1) becomes the
ordinary Fokker–Planck equation. The FFPE describes subdiffusion in accor-
dance with the mean-squared displacement in the force-free limit and it obeys
some generalized fluctuation-dissipation theorem. Moreover, a generalization
of the Einstein–Stokes–Smoluchowski relation K = kBT/η connects the gen-
eralized friction and diffusion coefficients ([62]).

Derivatives and integrals of fractional orders are used to describe objects
that can be characterized by long (power-like) memory or self-similarity. In
recent years, there has been a great interest in long-range dependent and self-
similar processes, in particular FBM, FLSM and ARFIMA. As a candidate
suitable for extensive statistical analysis of the fractional dynamics we choose
here the ARFIMA model ([31, 5, 3]). It is a discrete time analog of the over-
damped fractional Langevin equation ([55]) that allows for the non-Gaussian
law (Lévy α-stable) and the long memory.

The objective of this work is to convince the readers that the ARFIMA
process can serve as a universal and simple discrete time model for fractional
dynamics of empirical data and the celebrated FBM and FLSM form the lim-
iting case of ARFIMA. Moreover, since the ARFIMA models were successful
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in analyzing data in other fields (econometrics, see 2003 Nobel Prize in Eco-
nomic Sciences for C.W.J. Granger and R. Engel; finance and engineering in
[23, 26, 29]), many statistical tools (and computer packages, e.g. ITMS in [5])
are available and are presented in Appendix D. We also provide a basic check-
list for convenience of the inexperienced user as to what statistical techniques
must be applied in various stages of the analysis of the empirical data.

The paper is structured as follows. In section 2 three models for frac-
tional dynamical systems are considered, namely FBM, FLSM and ARFIMA
time series. The former two models are self-similar and their increments form
long-range dependent processes. The latter discrete-time ARFIMA process is
stationary, and when aggregated, in the limit, it converges to either FBM or
FLSM. In this sense it generalizes both models. In contrast to them, it allows
for different light- and heavy-tailed distributions, and, as a stationary pro-
cess, provides tools for calculating predictions. In section 3 we discuss three
data sets related to the molecular biology problems. They are successfully
resolved by means of the universal ARFIMA time series model with various
noises. Even if the finer details of the estimation procedures are case specific,
we hope that the suggested checklist will still have been of great use as a
practical guide.

In Appendices A–F we describe useful fractional dynamics identification
and validation methods. We present an estimation algorithm for the ARFIMA
parameters in the case of noise belonging to the domain of attraction of
the stable law for both positive and negative memory parameters. We also
present methods of testing of stationarity and ergodicity, distribution type,
self-similarity and long memory. In particular we present two efficient meth-
ods of estimation self-similarity index and memory parameter with the help
of p-variation and sample mean-squared displacement respectively.

2. Basic models for fractional dynamics

In this section we discuss three models for fractional dynamics: fractional
Brownian motion (section 2.1), fractional Lévy stable motion (section 2.2),
and ARFIMA (section 2.3). The former two models are self-similar and their
increments form long-range dependent processes. The discrete-time ARFIMA
process is stationary and generalizes both models since aggregated, in the
limit, it converges to either fractional Brownian or Lévy stable motion. In
contrast to them, it allows for different light- and heavy-tailed distributions,
and both long (power-like) and short (exponential) dependencies ([14]). More-
over, as a stationary process, it provides prediction tools.
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2.1. Fractional Brownian motion

Fractional Brownian motion introduced by Kolmogorov in 1940 ([43, 58]) is
a generalization of the classical Brownian motion (BM). Most of its statistical
properties are characterized by the self-similarity (Hurst) exponent 0<H<1.
For any 0 < H < 1, fractional Brownian motion (FBM) of index H (Hurst
exponent) is the mean-zero Gaussian process BH(t) with the following integral
representation ([58]):

BH(t) =

∫ ∞
−∞

{
(t− u)

H− 1
2

+ − (−u)
H− 1

2
+

}
dB(u),

where B(t) is a standard Brownian motion and (x)+ = max(x, 0).
FBM is H-self-similar, namely for every c > 0 we have BH(ct)

D
= cHBH(t)

in the sense of all finite dimensional distributions, and has stationary incre-
ments. It is the only Gaussian process satisfying these properties. With proba-
bility 1, the graph of BH(t) has both Hausdorff dimension and box dimension
of 2−H.

For H > 1/2, the increments of the process are positively correlated and
exhibit positive long-range dependence, whereas for H < 1/2, the increments
of the process are negatively correlated and exhibit negative long-range de-
pendence (see Appendix C). For the second moment of the FBM we have
< B2

H(t) >= σ2t2H , where σ > 0.
The precise simulation of such process is of great interest. The most com-

monly used approaches can be split in two categories. The first one, related to
theoretically exact methods, has so far been composed only of a matrix fac-
torization technique based on the Cholesky decomposition of the covariance
matrix. Unfortunately, this technique has a complexity of O(N2) and requires
high computational resources even for moderate trajectory lengths. The other
category is composed of nonexact techniques. All of the above methods have
their particular drawbacks and advantages. The choice between them boils
down to a tradeoff between speed and accuracy. However, Davies and Harte
in [24] proposed both fast and exact synthesis method for stationary Gaussian
processes, called the circulant embedding method. It can be easily applied for
a FBM ([18]). Since based on the fast Fourier transform (FFT) algorithm, its
complexity is only O(N logN).
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2.2. Fractional Lévy stable motion

FBM can be generalized to a fractional Lévy stable motion (FLSM) ([38,
75]). FLSM is the α-stable process LαH(t) with the following integral repre-
sentation:

(2.1) LαH(t) =

∫ ∞
−∞

{
(t− u)d+ − (−u)d+

}
dLα(u),

where Lα(t) is an α-stable motion (SM), 0 < α ≤ 2, 0 < H < 1, and d =
H − 1/α.

The process for α = 2 becomes a FBM, isH-self-similar and has stationary
increments. Analogously to the FBM case, we say the increments of the process
exhibit positive long-range dependence if d > 0 (H > 1/α), and negative
dependence when d < 0 (H < 1/α) ([74]). This is due to the behaviour of the
integrand (kernel function) in (2.1).

When d < 0, the kernel function has singularities at u = 0 and u = t.
These singularities magnify the stable noise process dLα(t), cause large spikes
in the paths of the FLSM. Their dependence structure resembles that of a
negatively correlated process and thus we shall refer to this case as to the
negative dependence scenario. In the case when d > 0 the kernel is bounded
and positive, for all t > 0. Thus the jumps in the paths of LαH(t) due to the
fluctuations of the noise process are not as magnified as in the case d < 0.
In this case especially for large values of H, the kernel function decays slowly
as u → −∞. This implies that the past fluctuations in the process dLα(t)
influence significantly the present values of the process LαH(t). This case is
referred to as the positive long-range dependence scenario. Therefore, as in
the Gaussian case, the parameter d controls sign of dependence.

Simulation of such process is even more difficult than in the FBM case.
This is due to the fact that stable processes cannot be characterized by two-
dimensional distributions, as in the Gaussian case. Namely, any Gaussian
random vector is fully defined by the mean and covariance matrix, whereas
stable vectors are defined in terms of so-called spectral measure ([38]), which
is a much more complicated object. Hence, there are no exact methods of
simulation of FLSM in the literature. The most commonly used approaches
apply integral representation of FLSM. Stoev and Taqqu in [74] proposed a
fast method based on the FFT algorithm with complexity only O(N logN). It
can be also applied to ARFIMA processes and more general moving average
stable processes.
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2.3. ARFIMA process

Autoregressive fractionally integrated moving average (ARFIMA) time se-
ries were introduced by Granger and Joyeux ([31]) and Hosking ([37]). The
ARFIMA process {Xt}, denoted by ARFIMA(p, d, q), is defined by:

(2.2) Φp(B)Xt = Ψq(B)(1−B)−dZt,

where innovations Zt are i.i.d. random variables with either finite or infinite
variance. Φp(z) = 1−φ1z−φ2z2− . . .−φpzp is the autoregressive polynomial
and Ψq(z) = 1 + ψ1z + ψ2z

2 + . . . + ψqz
q is the moving average polynomial.

The operator (1 − B)−d is an integrating operator and has infinite binomial
expansion

(2.3) (1−B)−dZt =

∞∑
j=0

bj(d)Zt−j ,

where the bj(d)′s are coefficients in the expansion of the function f(z) =
(1− z)−d, |z| < 1, i.e.

bj(d) =
Γ(j + d)

Γ(d)Γ(j + 1)
, j = 0, 1, . . . ,

where Γ is the gamma function.
The sequence {Zt} is often called a “noise process (sequence)” ([5]). We

assume that innovations Zt are i.i.d. and belong to the domain of attraction
of an α-stable law with 0 < α ≤ 2. The series given by (2.3) is convergent
almost surely (a.s.) and ARFIMA definition (2.2) is correct if and only if

α(d− 1) < −1 ⇐⇒ d < 1− 1

α
.

In particular, in the Gaussian case (α = 2) we have d < 1/2. Moreover, if all
roots of the polynomial Φp lie outside the unit circle, the ARFIMA(p, d, q)
time series defined by (2.2) is stationary and has a causal moving average
form

(2.4) Xt =

∞∑
j=0

cj(d)Zt−j

(for details see [37, 41]). Stationary ARFIMA processes are also ergodic ([74]).
In this paper we concentrate on such a case.
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Such processes are asymptotically H-self-similar with the parameter H =

d + 1/α. Precisely, we have N−H
∑[Nt]
k=1Xk → LαH(t) for t ≥ 0 and the con-

vergence is with respect to finite-dimensional distributions ([74]). Hence the
ARFIMA process can be considered as a discrete-time generalization of FLSM
(in particular of FBM).

In the Gaussian case, the rate of decay of the autocovariance function of
the ARFIMA model is

r(k) =< X(0)X(k) >∼ k2d−1, as k →∞,

where < X(0)X(k) > denotes the mean value of X(0)X(k). Therefore, for
d > 0 we have

∑∞
k=0 |r(k)| = ∞. This serves as a classical definition of

long memory and is equivalent to the case of the increments of FBM with
H > 1/2. Similarly, for d < 0 we arrive at the negative short (but power-like)
dependence, which corresponds to the increments of FBM with H < 1/2. The
case d = 0 leads to the autoregressive moving average (ARMA) model, which
has exponentially decaying autocorrelation function ([5, 69]).

Finally, the linear predictor for the ARFIMA process based on the finite
past Xn, . . . , X0 takes the form:

X̂n+h =

n∑
j=0

ajXn−j ,

where the sequence {a0, a1, . . . , an} is given by aj = −
∑k−1
t=0 cthj+k−t, the

cj ’s are defined by (2.4) and hj ’s are given by

Φp(z)(1− z)d

Θq(z)
=
∞∑
j=0

hjz
j , |z| < 1,

see [40] for the discussion of the prediction problem in the infinite variance
ARFIMA case.

Simulation of ARFIMA processes is by no means straightforward. For
such processes, except for the special case of ARMA(p, q) model, there are no
exact methods. The existing algorithms concentrate mostly on efficient ways
to calculate the infinite sum given in (2.4). Stoev and Taqqu ([74]) proposed
a fast method based on the FFT algorithm with complexity only O(N logN).
It can be also applied to FLSM and more general moving average stable
processes.

The ARFIMA(0, d, q) is called FIMA(d, q) and is represented by the fol-
lowing equation

(1−B)dX(t) = Z(t)− ψ1Z(t− 1)− . . .− ψqZ(t− q),
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where t = 0,±1, . . ., B is a shift operator: BX(t) = X(t−1), −1/2 < d < 1/2,
which takes fractional values, either positive or negative, and {Z(t)} is a white
noise sequence ([5]).

In many applications ARFIMA(1, d, 1) model is sufficient to describe the
data well, see, e.g. [12, 14]. The basic building blocks of ARFIMA(1, d, 1)
model are AR(1) process: X(t) = φ1X(t − 1) + Z(t), and MA(1) process:
X(t) = Z(t)−ψ1Z(t−1). AR(1) is a causal or future-independent function of
noise and stands for the regression. The explanatory variable is the observation
immediately prior to our current observation. In order to get an idea about the
role of MA part let us concentrate on the case when Z(t) is a white noise. It
appears that if X(t) is a stationary 1-correlated time series, i.e. X(s) and X(t)
are independent whenever |t− s| > 1 (in contrast to an i.i.d. sequence which
is zero-dependent), then it can be represented as the MA(1) process ([5]).
The dependence (correlation in the white noise case) is only one lag long and
its intensity is fully controlled by the parameter ψ1. Hence, ARMA models
introduce short memory of the process. In general, the MA(q) process may
reconstruct an arbitrary short time (finite lag) correlation structure from the
experimental data. The fractional integration introduces the long (power-law)
memory, which is defined by the memory parameter d.

Its special case, FIMA(d, 1) is given by the following formula:

(2.5) (1−B)dX(t) = Z(t)− ψZ(t− 1),

where t = 0,±1, . . ..
Brownian motion (BM) corresponds, in the limit sense (see [74]), to

FIMA(0, 0). Similarly, FBM corresponds to FIMA(d, 0) with d = H − 1/2,
where H is the self-similarity parameter. Hence, it is possible to model and
characterize more complex processes than with FBM alone. The FIMA pro-
cesses offer flexibility in modelling long power-law and one-lag dependencies
by choosing the memory parameter d and the appropriate moving average
coefficient ψ in (2.5).

We will illustrate how the methodology proposed in the Appendix can be
applied to the verification of the ergodic property using simulated trajectories
of the following two processes:
(i) ergodic (increments) of fractional Brownian motion (fBm):

X(t) =

∫ ∞
−∞

{
(t− u)

H− 1
2

+ − (−u)
H− 1

2
+

}
dB(u),

where B(t) is a Brownian motion,
(ii) non-ergodic subordinated Ornstein–Uhlenbeck process (sOU):

X(t) = Z(Sα(t)),
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where Z(t) is an Ornstein–Uhlenbeck process

dZ(t) = −λZ(t)dt+ σdB(t)

and Sα(t) is the inverse α-stable subordinator independent of Z(t) defined in
the following way:

Sα(t) = inf{τ > 0 : Uα(τ) > t},

where Uα(t) is the α-stable subordinator with Laplace transform given by
e−tu

α

. In the simulations we use the following parameters: H = 0.4, α = 0.8,
λ = 0.5, σ = 0.1. Moreover, we assume that X(0) = 0 for fBm and X(0) ∼
N(0, σ

2

2λ) for sOU. Sample trajectories of the analyzed processes and their
increments are plotted in Figs. 1 and 2.
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Figure 1. Sample trajectory (left hand panel) and it’s increments (right hand
panel) of the fractional Brownian motion with H = 0.4, source: [53]
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Figure 2. Sample trajectory (left hand panel) and it’s increments
(right hand panel) of the subordinated Ornstein–Uhlenbeck pro-
cess with α = 0.8, λ = 0.5, σ = 0.1, source: [53]
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One should remember that ergodicity is well defined only for stationary
processes. Hence, stationarity of the process distribution is the first property
to check before proceeding to ergodicity analysis. A standard way is to plot
quantile lines ([38]).

Next, for both of the analysed sample paths we calculate the empirical dy-
namical functional. Note that since we analyse single trajectories the ensemble
average in the definition of theoretical D(n), see Appendix B,

D(n) ≈ D̂(n) =
1

N − n+ 1

N−n∑
k=0

exp{i[X(n+ k)−X(k)]},

is replaced by using the empirical D̂(n). The results are plotted in Figures 3
and 4 for the classical Ornstein–Uhlenbeck process (OU) and for the sub-
ordinated Ornstein–Uhlenbeck process (sOU), respectively. What can be
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Figure 3. Empirical D(n) of the Ornstein–Uhlenbeck process (blue solid line) as
well as theoretical D(n) obtained from formula in [53] (dashed black line). Note
that in the left hand panel the real part of D(n) is plotted while in the right hand
panel the imaginary part, source: [53]

easily noticed from these pictures is that, while for the OU process the dy-
namical functional converges rapidly to some constant, for the sOU process
there is no convergence. Such result might indicate on ergodicity of OU pro-
cess and clearly proves non-ergodicity of the sOU process. Further, we use
the analytical formulas obtained in the paper. We estimate parameters of
ARFIMA(1, 0, 0) process and calculate the theoretical asymptotic value of
that model. We obtain φ = 0.31 for OU process and φ = 0.45 for the sOU pro-
cess. The theoretical dynamical functionals for the analyzed cases are plotted
in Figures 3 and 4 together with the corresponding empirical values. What
we can observe is that for the OU process these values coincide, which con-
firms that the analyzed sample trajectory indeed comes from the ARFIMA
model with autoregression property and no memory. Obviously, such model
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Figure 4. Empirical D(n) of the subordinated Ornstein–Uhlenbeck process (blue
solid line) as well as theoretical D(n) obtained from formula in [53] (dashed black
line). Note that in the left hand panel the real part of D(n) is plotted while in
the right hand panel the imaginary part, source: [53]

is ergodic. On the other hand, for the sOU process the obtained values are
different even in the long time limit. As a consequence, the structure of the an-
alyzed trajectory is significantly different from an ergodic ARFIMA model.
This simple example illustrates in what way, using the results derived in the
paper, we can verify if the analyzed data comes from a huge general class of
ARFIMA models and conclude on it’s ergodicity.

3. Modelling of fractional dynamics

In this section we illustrate the applicability of ARFIMA processes to three
different kinds of biological SPT data. We will study the data by applying the
following general checklist proposed in [16] for testing fractional dynamics.

Checklist. Testing for fractional dynamics
L1 Stationarity and ergodicity (prerequisites for ARFIMA modelling) (see Ap-

pendices A–B)
L2 Sample MSD (to check for the presence of the power-law dependence and

anomalous diffusion) (see Appendix C)
L3 Fitting the ARFIMA parameters (usually it is enough to fit at most

ARFIMA(1, d, 1), so three parameters are to be estimated) (see Appendix
D)

L4 Fitting the distribution to the noise (Gaussian, non-Gaussian stable, other)
(see Appendix E)
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L5 (optional) H-self-similarity for the partial sum process (along with the
concept of surrogate data it provides a double check for both the memory
parameter d and stability index α) (see Appendix F)

Anomalous diffusion in crowded fluids, e.g. in cytoplasm of living cells, is
a frequent phenomenon ([36]). Crowded fluids form a wide class of soft con-
densed matter systems. Prominent examples provide dense polymer solutions
and the cytoplasm of living cells ([34]).

The motion of tracer particles may switch from normal to anomalous diffu-
sion, i.e. the tracers’s mean square displacement (MSD) exhibits a sublinear
growth with time MSD(t) ∼ ta, where a < 1 for pure anomalous subdif-
fusion. In the transient anomalous subdiffusion one mechanism operates at
short times and another at long times, depending on a crossover time. De-
spite the frequent observation of such a behavior in crowded fluids, the origin
of the anomaly remains controversial ([67]).

Why does anomalous subdiffusion matter? According to [67], first, it affects
reaction kinetics through the time dependent diffusion coefficient. Second,
it is a probe of submicroscopic organization, though unfortunately far from
uniquely invertible. Moreover, ubiquitous observation in cell biology is that
the diffusive motion of macromolecules and organelles is anomalous, see [36].

The progress in understanding the molecular nature of intracellular pro-
cesses in the last years is astonishing, and is due to tight collaboration of
physicists, chemists, biologists and mathematicians, all working in the same
direction and using specific methods of their sciences ([70, 11]).

3.1. Fitting ARFIMA to the mRNA data

As a universal candidate suitable for extensive statistical analysis of the
subdiffusive dynamics in biological cells we propose here the ARFIMA model
which was described in the previous section. We apply the introduced method-
ology to the single mRNA molecule time series from the Golding and Cox mi-
croscopy video ([30, 12]). The analyzed video has 1801 frames of size 59× 76
pixels, which present location of mRNA molecule at the time tk = k sec, for
k = 1, . . . , 1801. The center of pixel in the upper-left and bottom-right corner
of each frame has coordinates (1, 1) and (59, 76), respectively. We identified
the position of a molecule at the time tk with the position of its mass cen-
ter (x̄(tk), ȳ(tk)), which is calculated based on image segmentation results
obtained by application of the approach introduced in [20].

Consequently, we obtained a 2D data set of (x̄(tk), ȳ(tk)), k = 1, . . . , 1801.
These data form time series of a single mRNA molecule in the analyzed mi-
croscopy video ([12]). We analyze a 2D trajectory {(Xn, Yn) = (x̄(tn), ȳ(tn)) :
n = 1, . . . , 1801} and concentrate on the increments of x and y coordinates.
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All analysis is based on two sets of increments {Xn+1−Xn : n = 1, . . . , 1800}
and {Yn+1 − Yn : n = 1, . . . , 1800} of coordinates x and y, respectively.

Step L1. Trajectories and their increments of both coordinates of the data
are presented in Figure 5. A simple examination of the presented increments
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Figure 5. A plot of the trajectories (top panels) and their increments
(bottom panels) with a change point in variance (red dashed line),
for x (left hand panels) and y coordinates (right hand panels). The
variance changing points are 702th and 715th observations for x and
y coordinates, respectively, source: [12]

tells us that the data are not stationary in general. They demonstrate two
different regimes. Hence, by using the variance change point test ([28]) we
split the data for two stationary subsets. The changing points are 702th and
715th observation for x and y coordinates, respectively. In sum, we obtain
four subsets which we denote by X1, X2, Y 1 and Y 2.

Next, we applied the ergodicity test (see Appendix B) to all four subsets of
the data to check the necessary condition for ergodicity (B.6), which requires
only one appropriately long trajectory. In Figure 7 we see the result of the test
for the X1 and X2 subsets. The necessary condition for mixing (B.5) is clearly
satisfied. This implies that ergodicity cannot be rejected. We also checked that
all subsets satisfy necessary conditions for mixing (B.5).

Step L2. In order to check the power-law dependence and subdiffusive be-
havior of the data we calculated the sample MSD (see Appendix C). First,
we calculated sample MSD for all four subsets of the data: X1, X2, Y 1 and
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Figure 6. Autocorrelation (top panel) and
partial autocorrelation (bottom panel) func-
tions corresponding to the subset X1 of data.
Both functions tend to zero indicating sta-
tionarity of the sample. Moreover, all values
of the functions lie between 95% confidence
bounds calculated for the white noise case
which suggests the ARFIMA(0, d, 0) model,
source: [16]

Y 2 and obtained the following d estimates: −0.1, −0.19, −0.28, −0.22, respec-
tively. Next, we did it for the 2D data: (X1, Y 1), (X2, Y 2) and (X = X1∪X2,
Y = Y 1 ∪ Y 2), where the distance was calculated according to Euclidean
norm. The results were: −0.15, −0.20, −0.16, respectively. We can see that in
all cases d is essentially negative (the negative power-law dependence case),
hence the process clearly follows the subdiffusive dynamics.

Step L3. We fitted the ARFIMA(1, d, 1) model (see Appendix D) to the four
time series ([12]). The best-fitted ARFIMAmodels were: ARFIMA(0,−0.13, 0),
ARFIMA(0,−0.14, 1) (ψ = 0.13), ARFIMA(1,−0.07, 1) (φ = 0.48, ψ = 0.67)
and ARFIMA(0,−0.38, 0). The orders of the model were chosen looking at the
autocorrelation and partial autocorrelation functions (see Appendix A) and
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Figure 7. Real (left hand panels) and imaginary
(right hand panels) parts of the function Ê(n)
corresponding to the subsets X1 (top panels)
and X2 (bottom panels) of the data, source:
[16]. The necessary condition for mixing (B.5)
is clearly satisfied. This implies that ergodicity
cannot be rejected

checking the independence of the noise. The noise was calculated by means
of ITSM package ([5]). The independence for the above models could not be
rejected for the Ljung–Box, turning points, difference-sign and rank tests (for
the information about the tests, see, e.g., [5, 8, 7]).

Step L4. Next, we fitted different distributions to the noise, namely Gauss-
ian, Lévy stable and normal-inverse Gaussian (NIG). A random variable X is
said to have a NIG distribution if it has density

(3.1) f(x) =
αδ

π
eδ
√
α2−β2+β(x−µ)K1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
, −∞ < x <∞.

The NIG distribution, introduced in [2], is described by four parameters
(α, β, δ, µ), where α stands for tail heaviness, β for asymmetry, δ is the scale
parameter, and µ is the location. The normalizing constant Kλ(t) in (3.1) is
the modified Bessel function of the third kind with index λ, also known as the
MacDonald function.

The NIG law is the only one that cannot be rejected for any part of
the data (see [12]). To confirm the goodness of fit of the model, we also
calculated sample MSD for 1000 simulated trajectories of ARFIMA models
with the fitted parameters given and compared the results with the MSD
values obtained for the original data. We can see in Figure 8 that the fitted
ARFIMA processes reproduce the sample MSD well.
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Figure 8. Boxplots of sample MSD calculated for 10 000
simulated trajectories of the ARFIMA processes fitted
to the four subsets of the analyzed data. We can observe
that the ARFIMA model leads to the MSD values which
are close to those from the empirical data, source: [7]

The proposed ARFIMA model is universal, nevertheless, it turns out, that
the four stationary subsets of the 2D trajectory have different parameters
(φ1, d, ψ1). This is due to the fact that our single particle tracking analysis is
not a mean-value approach as it was done in [30]. Observe that the shape of the
cells and crowded fluid characteristic of the cytoplasm influence the dynamics
of the labelled mRNA molecules. In particular, we believe that the parameters
of the fitted ARFIMA models can provide some insight into the physical
reasons for subdiffusive motion of the molecule. Namely, the parameters d in
both directions x and y are influenced by the shape of the cell. Simulations
show that, e.g., as the width of the biological cell gets smaller then the memory
parameter becomes “more negative”. Two additional parameters φ1 and ψ1

which are responsible for short-time effects are influenced by short-distance
interactions in a crowded fluid environment in the cytoplasm ([12]).

Step L5. Finally, we studied the surrogate data of the four subsets. From the
results for the surrogate data (see Appendix E), the corresponding estimates
for the parameter 1/α were: 1/αpV ar = HpV ar = 0.53, 0.5, 0.47, 0.5, respec-
tively, whereHpV ar is the self-similarity estimator obtained via the p-variation
method (see Appendix F). We observe that the values confirm that the dis-
tributions of the noises belong to the domain of attraction of the Gaussian
(α = 2) law.

Recall that both the self-similarity index H and type of distribution 1/α
have impact on d, since d = H − 1/α.
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3.2. Dynamical functional for telomeres data from the U2OS
cancer cell line

We start with an analysis of a single trajectory of fluorescently labeled
telomeres in the nucleus of living human cells originating from the U2OS
cancer cell line (for a detailed data description see [10]). The analysed tra-
jectory is plotted in Figure 9. Since the considered ARFIMA model is a
stationary process, we will consider the increments of the X coordinate, i.e.
dX(tn) = X(tn+1)−X(tn), where t1, t2, ..., tN are the time points of the mea-
surements. A trajectory of the process dX is plotted in the bottom panel of
Figure 9.
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Figure 9. X coordinate of telomere trajectory (top panel) and it’s increments
(bottom panel)

In paper [10] the authors showed that the telomere motion is driven by
a fractional Gaussian noise with negative memory parameter. Recall that
ARFIMA(0, d, 0) is a discrete version of the fractional noise process. More-
over, it was recently shown in [9] that ARFIMA(0, d, 1) process can be an
appropriate model for anomalous diffusion data with measurement errors and
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the MA part can help in the identification of these errors in such experi-
ments. Being motivated by the mentioned results and the fact that exper-
imental data usually contains some measurement errors, we fit a Gaussian
ARFIMA(0, d, 1) model to the dX process of the analysed trajectory. A
detailed guideline for the ARFIMA model parameters estimation one can
find e.g. in [16]. We obtain the following parameter values d = −0.3138,
θ = −0.6536 and σ = 0.0199. Next, we test for the Gaussianity of the noise
process. To this end, we apply a Kolmogorov–Smirnov goodness-of-fit test and
obtain p-value = 0.44. Because the obtained p-value is well above the standard
significance level of 5%, the Gaussianity hypothesis can not be rejected and
with high certainty we can assume that it is true.

Having estimated the ARFIMA(0, d, 1) model parameters we can use the
theoretical findings of [53] and calculate the values of the dynamical functional
D(n) for such model. At the same time we can calculate the empirical value
of D(n) for the analysed trajectory. Note that since we focus on only one
trajectory we use the time average instead of the ensemble one. The results
are plotted in Figure 10. The obtained curves almost coincide, both for the
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Figure 10. D(n) of Gaussian ARFIMA(0, d, 1) fitted to telomere data (dashed
green line) and empirical D(n) calculated from increments of a single telomere
trajectory (solid blue line). The real part of D(n) is plotted in the left hand
panel, while the imaginary part in the right hand panel, source: [53]

real part (left hand panel) and the imaginary part (right hand panel), which
shows similar behaviour of the telomere data as for the theoretical model.
Hence, we can confirm that the telomere motion can be described by the
ARFIMA(0,−0.32, 1) model. Recall that such a model is characterized by
a negative memory responsible for subdiffusion. Moreover, it has no autore-
gression part, so the lengths of the telomere moves are not linearly dependent
on the previous steps. Further, the MA(1) part is found in the data, which
means that there is a correlation between the error terms of the consecutive
telomere position recordings. Such a property can be related to some recur-
rent measurement errors. Finally, since the ARFIMA(0,−0.32, 1) model is
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ergodic and we have rigorously confirmed that it’s theoretical behaviour of
the dynamical functional resembles the empirical behaviour of the dynamical
functional for telomere increments, we can conclude that the telomere motion
is ergodic.

3.3. Dynamical functional for mRNA molecules
inside live E. coli cells

Now we turn to the second example, illustrating behaviour of the dynam-
ical functional for experimental data, namely movements of mRNA molecules
inside live E. coli cells recorded by Golding and Cox ([30]) in SPT experi-
ment. We focus on a single trajectory, which is the longest one out of the
whole dataset. Analogously as in the previous example, we analyse the in-
cremental process dX. The mRNA trajectory is plotted in the top panel of
Figure 11, while the process dX is plotted in the bottom panel.
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Figure 11. mRNA trajectory (top panel) and it’s increments (bottom panel)
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The same trajectory was analysed in [7] and the author showed that the
ARFIMA(1, d, 1) model with α-stable noise process can be used to model
the increments of the mRNA motion. We use the same model parameters as
estimated in the mentioned work, i.e. d = −0.16, φ = −0.02 and θ = 0.12.
Next, we fit a symmetric α-stable distribution for the noise process. We obtain
α = 1.86 and σ = 0.0083. Note that the remaining β and µ parameters are
equal to 0. In order to confirm that the chosen distribution fits the analysed
data, we perform the Kolmogorov–Smirnov goodness-of-fit test. The obtained
p-value is equal 0.78 and is well above the standard 5% significance level, so
we can assume that the α-stable distribution is appropriate for modelling the
mRNA data.

Further, we compare the analytical formula for the dynamical functional
from [53] with the estimated model parameters and the dynamical functional
calculated from mRNA data. Again, since we analyse a single trajectory, en-
semble average is replaced with time average. The obtained results are plotted
in Figure 12.
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Figure 12. D(n) of α-stable ARFIMA(1, d, 1) fitted to mRNA data (dashed green
line) and empirical D(n) calculated from increments of a single mRNA trajectory
(solid blue line). The real part of D(n) is plotted in the left hand panel, while the
imaginary part in the right hand panel, source: [53]

As we can observe, the empirical values of D(n) almost coincide with the
theoretical functional form for both, the real (left hand panel of Figure 12) and
the imaginary part (right hand panel of Figure 12). Hence, we have obtained
another confirmation that the α-stable ARFIMA(1,−0.16, 1) model can be
used to describe the mRNA motion in live E. coli cells. This model is ergodic
and we have shown that its theoretical behaviour of the dynamical functional
resembles the empirical behaviour of the dynamical functional for mRNA
motion increments. As a consequence, we can conclude that the mRNAmotion
is also ergodic. The model parameters indicate on subdiffusive behaviour of the
data (negative memory parameter d), autoregression of order one, i.e linear
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dependence between the values in the consecutive time steps (AR(1) part)
and the correlation between error terms (MA(1) part).

The last two examples illustrate how the functional form of D(n) can be
used for the verification if the chosen ARFIMA model fits the data and what
conclusions does it yield on the properties of the underlying phenomenon.
A possibility to verify ergodic properties of a process, and hence use of the
Boltzmann hypothesis, is an essential issue for studies of the real-life phenom-
ena. One of the statistical tools that might be utilized in this context is the
dynamical functional D(n).

Further, using examples of simulated Ornstein–Uhleneck processes of two
types (i.e. ergodic and non-ergodic) and biophysical data, we have illustrated
that the obtained analytical formula for D(n) can be used to verify if a chosen
model fits the experimental data, i.e. if the empirical and theoretical values
coincide and what conclusions does it yield on the properties of the underlying
phenomenon. Since the α-stable ARFIMA model is a discrete time version
of many celebrated fractional processes (like e.g. fractional Brownian motion
or fractional Levy motion), the obtained results yield a convenient tool that
may help in an analysis of anomalous diffusion dynamics.

Appendix A. Stationarity

All tools presented here assume that the data are either stationary or
increment stationary ([11]). Stationary and non-stationary processes are very
different in their properties, and they require different inference procedures.
First, note that a simple and useful method to tell if a process is stationary
in empirical studies is to plot the data. Loosely speaking, if a series does seem
to have a linear trend, seasonal trend or a varying volatility, then very likely,
it is not stationary. In this case one has to transform the data to make them
stationary. To this end, it is usually enough to remove the trends by means of
fitting and subtracting a polynomial and a trigonometric function.

For a more refined diagnostic of dependence and stationarity, autocorrela-
tion function (ACF) and partial autocorrelation function (PACF) are exam-
ined. The sample autocorrelation function at lag k is defined as

rk =

N−k∑
t=1

(Xt −X)(Xt+k −X)

N∑
t=1

(Xt −X)

, for k = 0, 1, . . . ,K
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and stands for a measure of the linear dependence between observations with
time lag k ([5]). The partial autocorrelation function ηk, which, at lag k,
is defined as a correlation between the predictor errors of values Xn and
Xn+k represented in terms ofXn+1, . . . , Xn+k−1 ([5]). For any ergodic process,
both functions, ACF and PACF, should approach to zero as the lag tends
to infinity. They also provide information about the order of the underlying
ARMA model. This leads to a simple visual test for stationarity.

Algorithm 1. Stationarity test for one sample ([16])
(i) Plot the data. If the data posses a clear linear or seasonal trend, try to

remove it.
(ii) Calculate ACF and PACF. If they converge to zero, this suggests sta-

tionarity of the underlying process. In particular:
(a) For i.i.d. data the autocorrelation function should be zero for all

k 6= 0. The partial autocorrelation function should be equal to zero
except for the lag k = 0.

(b) For moving average processes of order q (MA(q)), the autocorrelation
function should be zero for lags beyond q. Hence, it can be used for
estimating the q parameter.

(c) For autoregressive processes of order p (AR(p)), the partial autocor-
relation function should be zero for lags beyond p. Hence, it can be
used for estimating the q parameter.

We also note that if the model possesses both the MA and MA parts then
the reasoning about the orders of the models (estimation of p and q) can be
quite misleading ([5]).

If a number of realizations of a phenomena is recorded, the stationarity
property of the analyzed datasets can be checked by means of so-called quan-
tile lines. Let us assume that we observe M samples of length N and denote
their values by {Zkn}, n = 1, 2, . . . N , k = 1, ...,M , and 0 < pj < 1, j = 1, ..., J
are given probabilities.

Algorithm 2. Stationarity test for many samples ([77])
(i) Derive estimators of the corresponding quantiles qj(n) = F−1n (pj), where

Fn = Fn(x) denotes CDF of the random variable Zn represented by the
statistical sample Zkn, k = 1, ...,M .

(ii) Obtain the approximation of the so-called quantile lines, i.e. the curves
qj = qj(n) defined by the condition P{Zn ≤ qj(n)} = pj. In layman
terms, the quantile lines represent the value qj for which pj ∗ 100% of
the data are below at a certain time point n.

(iii) For a stationary process the quantile lines qj(n) = const, whereas for a
self-similar process they behave like nH .
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Appendix B. Mixing and ergodicity

We describe now another two fundamental properties of the data: ergod-
icity and mixing. Ergodicity of the stationary process Y (n) means that its
phase space cannot be divided into two nontrivial sets such that a point start-
ing in one set will never get to the second set. Let us emphasize that for every
stationary and ergodic process the Boltzmann ergodic hypothesis, enabling
better analysis of the data characteristics, is satisfied, i.e. the temporal and
ensemble averages coincide.

Another fundamental property is mixing, i.e. the asymptotic independence
of the random variables Y (n) and Y (0) as n goes to infinity. It is well-known
that mixing is a stronger property than ergodicity ([49]). Thus to show ergod-
icity it is enough to prove mixing, which is easier in many cases.

To this end, we use the dynamical functional (DF) test recently developed
in [56] (see also [48]). It is based on a concept of the dynamical functional
([38]). The dynamical functional D(n) corresponding to the process Y (n) is
defined as

(B.1) D(n) = 〈exp{i[Y (n)− Y (0)]}〉 .

Thus, D(n) is actually a Fourier transform of Y (n)− Y (0) evaluated for the
Fourier-space variable k = 1. The following result illustrates the strength of
the dynamical functional ([19]). The stationary ID process Y (n) is mixing if
and only if

(B.2) lim
n→∞

D(n) = |〈exp{iY (0)}〉|2.

The above condition should be viewed as the asymptotic independence of
Y (n) and Y (0) as n→∞. Moreover, if Y (n) is Gaussian, then the dynamical
functional is equal to D(n) = exp{σ2[r(n) − 1]}, where r(n) is the autocor-
relation function of Y and σ2 is the variance of Y (0). Thus, in the Gaussian
case, condition (B.2) is equivalent to the fact that r(n)→ 0 as n→∞.

The above condition (B.2) can be written in the equivalent form

(B.3) lim
n→∞

E(n) = 0,

where

E(n) = D(n)− |〈exp{iY (0)}〉|2.

The DF test holds for all infinitely divisible stationary processes ([56]).
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Consequently, using formula (B.2) we get that the stationary ID process
Y (n) is ergodic if and only if

lim
n→∞

1

n

n−1∑
k=0

D(k) = |〈exp{iY (0)}〉|2.

Equivalently, Y (n) is ergodic if and only if

(B.4) lim
n→∞

1

n

n−1∑
k=0

E(k) = 0.

It should be mentioned that in order to check necessary and sufficient con-
ditions for mixing (B.3) and ergodicity (B.4) in the language of dynamical
functional (B.1), the reasonable length of each analyzed trajectory should not
be shorter than 500 points. The number of trajectories needed to calculate
ensemble averages depends strongly on the underlying distribution. For the
Gaussian case it is enough to have about 100 trajectories, but it is not enough
for a heavy-tailed α-stable law. Every distribution needs to be analyzed sep-
arately.

It gets much more complicated, when there is not enough trajectories to
calculate ensemble averages, see [53, 54]. Suppose that we have only one real-
ization of the process Y (n), n = 0, 1, ..., N , where N is an appropriately large
integer. If we assume that Y (n) is mixing, then Boltzmann ergodic hypothesis
is satisfied – the temporal and ensemble averages coincide.

Algorithm 3. Testing of mixing and ergodicity properties on one trajec-
tory ([56, 48])
(i) Approximate the dynamical functional D(n) by

D̂(n) =
1

N − n+ 1

N−n∑
k=0

exp{i[Y (n+ k)− Y (k)]}.

(ii) Approximate the ensemble average on the right side of (B.2) by

â =
∣∣∣ 1

N + 1

N∑
k=0

exp{iY (k)}
∣∣∣2.

(iii) If

(B.5) Ê(n) = D̂(n)− â ≈ 0
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for large n, then the process can be mixing. Violation of (B.5) implies
that Y (n) does not have the mixing property.

(iv) Check the following condition

(B.6)
1

n

n−1∑
k=0

Ê(k) ≈ 0

for large n. If the condition is satisfied, then the process can be ergodic.
Its violation implies ergodicity breaking.

It should be underlined that (B.5) and (B.6) are by no means sufficient for
mixing and ergodicity, respectively. This means that having only one trajec-
tory of a random process we can prove lack of mixing or ergodicity. To show
that the process is mixing or ergodic, ensemble averages need to be calculated
([10]).

We note that the non-stationary (and non-ergodic) models like CTRW
can be distinguished from the ergodic and stationary models (as exemplified
by FBM) by applying tests aimed at checking the stationarity of increments
or ergodicity. In [60] a test, based on a fractal structure, was introduced to
discriminate between FBM and OD.

Appendix C. Memory parameter estimator based on sample
mean-squared displacement

In the literature different methods of assessing long-range dependence and
estimating the memory parameter d have been developed ([3]). It is important
to realize what are the assumptions and limitations of various tools and what
is the exact output of different estimators. This also refers to self-similarity
index estimators. For example, a very well-known RS method, in the general
stable case, does not return H, which is true only in the Gaussian case, but
the value d+ 1/2, where d = H − 1/α and α is the index of stability.

The sample mean-squared displacement (MSD) for the general Lévy stable
case was calculated in [15]. Let {Xi, i = 0, . . . , N} be a sample of length N+1.
Sample MSD MN (τ) for lag τ is defined as

(C.1) MN (τ) =
1

N − τ + 1

N−τ∑
k=0

(Xk+τ −Xk)2.
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Note the essential difference between increments of Xt in (F.1) and (C.1).
The latter is a moving window, whereas the former is defined on disjoint
subintervals (blocks). The sample MSD is a time average MSD on a finite
sample regarded as a function of difference τ between observations. It is a
random variable in contrast to the ensemble average which is deterministic.
The following fact describes the behaviour of the sample MSD for the par-
tial sum process of the ARFIMA time series. Let {Yi, i = 0, . . . , N} be an
ARFIMA(p, d, q) time series with α-stable noise and 1 < α ≤ 2. We define its
partial sum process {Xk =

∑k
i=1 Yi, k = 0, . . . , N}. Then for large N/τ :

MN (τ)
D∼ τ2d+1.

Since the normalized partial sum of the ARFIMA process converges to
a FLSM with H = d + 1/α ([74]), we obtain the following fact ([15]). Let
{Xi, i = 0, . . . , N} be a FLSM with 0 < H < 1 and 1 < α ≤ 2. Then, for
large N ,

MN (τ)
D∼ τ2d+1,

where d = H − 1/α.
In particular, for a FBM we obtain the well-known result that MN (τ) ∼

τ2H , and for both BM and LSM we arrive at the diffusion case, namely
MN (τ) ∼ τ since d = 0.

As a consequence, we see that the memory parameter d controls the type of
anomalous diffusion ([15]). If d < 0 (H < 1/α), so in the negative dependence
case, the process follows the subdiffusive dynamics, if d > 0 (H > 1/α),
the character of the process changes to superdiffusive. Moreover, it appears
that α-stable processes for α < 2 can serve both as examples of subdiffusion
and superdiffiusion. The subdiffusion pattern arises when the dependence is
negative, so possible large positive jumps are quickly compensated by large
negative jumps, and on average the process travels shorter distances than the
light-tailed Brownian motion.

Now, we introduce a method of estimation of the memory parameter d
based on the notion of sample MSD. It can be applied to ARFIMA time
series and fractional stable noise for both Gaussian (α = 2) and non-Gaussian
(α < 2) cases.

Algorithm 4. Estimation of the memory parameter based on sample
MSD ([8])
(i) Calculate MN (τ) for τ = 1, 2, . . . , 10.
(ii) Fit the linear regression line according to ln(MN (τ)) = ln(C) + a ln(τ),

τ = 1, 2, . . . 10, where C and a are constants.
(iii) The estimated value d̂ = (a− 1)/2.
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The introduced sample MSD estimator is consistent and works remark-
ably well, especially for the FBM case. Other analyzed processes need more
attention due to approximation errors caused by simulation methods and not
exact but limiting results. In general, one may check that the variance of the
estimator is very low compared with other well-known methods of estimation
of d, like, e.g. R/S ([7]).

Appendix D. ARFIMA parameter estimation

Following [42, 13], we define the (p + q + 1)-dimensional vector β0 =
(φ1, φ2, . . . , φp, ψ1, ψ2, . . . , ψq, d), where φ1, φ2, . . . , φp and ψ1, ψ2, . . . , ψq are
the coefficients of the polynomials Φp and Ψq respectively. The vector β0

belongs to the parameter space E = {β : φp, ψq 6= 0,Φp(z)Ψq(z) 6= 0 for
|z| ≤ 1,Φp, Ψq have no common roots, d ∈ (−1/2, 1− 1/α)}.

The estimation procedure can be summarized in the following steps.

Algorithm 5. ARFIMA parameter estimation ([13])
(i) Calculate the normalized periodogram by

In(λ) =

∣∣∣∣∣
n∑
t=1

Xte
−iλt

∣∣∣∣∣
2

, −π ≤ λ ≤ π.

(ii) The estimator βn of the true parameter vector β0 is defined as

βn = arg minβ∈E

∫ π

1
n

In(λ)

g(λ,β)
dλ,

where

g(λ,β) =

∣∣∣∣∣ Ψq(e
−iλ,β)

Φp(e−iλ,β)(1− e−iλ)d(β)

∣∣∣∣∣
2

.

If the orders of the model are small, which is often the case, the estimation
procedure simplifies. Let us now concentrate on ARFIMA(1, d, 1). In such a
case the parameter space E has three dimensions, i.e. β = (φ1, ψ1, d) ∈ E,
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polynomials Φp(z) = 1−φ1z, Ψq(z) = 1+ψ1z and the power transfer function
has the form

g(λ,β) =

∣∣∣∣1 + ψ1e
−iλ

1− φ1e−iλ

∣∣∣∣2 1

(2− 2 cosλ)d
.

Therefore, the estimator β̃n can be rewritten as

arg minβ∈E

∫ π

1
n

In(λ)

[
1− 2φ1 cosλ+ φ21
1 + 2ψ1 cosλ+ ψ2

1

]
(2− 2 cosλ)ddλ.

In particular, for the FIMA(d, 1) model, which is feasible in applications,
the estimator is

arg minβ∈E

∫ π

1
n

In(λ)
(2− 2 cosλ)d

1 + 2ψ1 cosλ+ ψ2
1

dλ.

In order to calculate β̃n, we have used fminsearch function implemented in
Matlab, which applies the simplex search method of [47].

The above estimation procedure requires information about the order of
the model, namely the p and q parameters. In practice, in order to estimate the
parameters one can investigate the autocorrelation and partial autocorrelation
functions (see Appendix A) or, for the increasing orders of the model, stop the
search when the noise becomes close to the white noise sequence. Calculation
of the noise can be performed by using standard mathematical packages, like,
e.g. ITSM ([5]). Checking its independence can be done via standard tests,
like the Ljung–Box ([7]).

Another way to estimate the parameters (including the order) of the
ARFIMA model is to find such a set of parameters which minimizes the pre-
diction error (the problem is related to so-called backtesting in statistics)
([72]). The prediction formula for ARFIMA processes was discussed in Sec-
tion 2.3. This is one of the most time-consuming fitting procedures but it has
an advantage that it is very meaningful to practitioners.

Appendix E. Fitting the distribution to the noise

We now consider in detail two possible probability laws underlying the
noise (and, consequently, the data): Gaussian and α-stable. To check if the
noise comes from a population with a different distribution, one can perform
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various statistical tests based on the empirical distribution function, e.g. the
Kolmogorov–Smirnov and Cramer–von Mises ([6, 7]).

Stable distributions, also called α-stable are ubiquitous in nature due to
generalized central limit theorem. It says that the stable distributions, like
the Gaussian one, attract distributions of sums of independent identically
distributed random variables ([38]). Due to this reason, stable distributions
naturally appear when evolution of a system or result of an experiment are
determined by a sum of many random factors.

A random variableX is stable if for some α ∈ (0; 2], σ ∈ (0;∞), β ∈ [−1; 1],
µ ∈ R its characteristic function has the following form ([38]):

φX(t) =

{
exp(−σα|t|α(1− iβ sgn(t) tan πα

2 ) + itµ) if α 6= 1,
exp(−σ|t|(1 + iβ 2

π sgn(t) ln |t|) + itµ) if α = 1.

Therefore, each stable distribution is characterized by four parameters.
The parameter α is called the index of stability, σ the scale parameter, β
the skewness parameter and µ is the location parameter. Stable variable X
is denoted by X ∼ Sα(σ, β, µ), whereas symmetric α-stable random variable
is denoted by X ∼ SαS. In the latter case β = µ = 0. When α = 2, the
distribution reduces to Gaussian. For the Gaussian distribution β is irrelevant,
and it is characterized by standard deviation and mean.

It is known that for general stable distributions, although they are contin-
uous, there is no elementary form of probability density function. Computa-
tional formulas for stable densities and distribution functions are given in [63].
The Fox function representation for the stable distributions is exhibited in [68]
and stable densities in terms of the incomplete hypergeometric function are
expressed in [35]. The only stable distributions with elementary probability
density functions are: the Gaussian distribution, namely X ∼ S2(σ, 0, µ) =
N(µ, 2σ2), the Cauchy distribution, namely X ∼ S1(σ, 0, µ), and the Lèvy
distribution, namely X ∼ S 1

2
(σ, 1, µ).

The tails of non-Gaussian stable distributions decrease like a power func-
tion: |x|−α. Due to this reason, they appear naturally in the description of
random processes with large outliers. The rate of decay depends mainly on
the parameter α. The smaller the α, the slower the decay and the heavier
the tails. Consequently, for a stable random variable X with index α < 2 one
has < |X|δ >= ∞ for any δ ≥ α and < |X|δ >< ∞ for 0 < δ < α. The
comprehensive theory of α-stable distributions is presented in [38].

There are at least three standard procedures for estimating stable law pa-
rameters: (i) the maximum likelihood method based on numerical approxima-
tion of the stable likelihood function; (ii) the quantile method using tabulated
quantiles of stable laws; and (iii) the method using regression on the sample
characteristic function. The regression method is considered to be both fast
and accurate ([79]).



Mathematical models for dynamics of molecular processes in living biological cells 35

If the analyzed data come from FLSM or ARFIMA with Lévy stable noise,
one can apply the computer test from [75] to estimate the stability index α of
the data. The test applies the concept of surrogate data ([21]), which refers to
data that preserve certain linear statistic properties of the experimental time
series, without the deterministic component. If the data come from FLSM
or ARFIMA, then we should observe a change to 1/α in the self-similarity
estimator values for FLSM and aggregate ARFIMA.

Algorithm 6. Computer test to estimate the stability index ([75])
(i) Obtain the surrogate data, e.g. by random shuffling of the original data

positions.
(ii) Estimate the self-similarity index H, e.g. via the p-variation algorithm

(see Appendix F). The resulting α = 1/H.

The test can be also used to distinguish between diffusion (BM and LSM)
and fractional (anomalous) diffusion (FBM and FLSM) models.

To test whether a data follow a Gaussian distribution it is enough to apply
one of the standard tests implemented in many many mathematical packages,
like, e.g. Jarque–Berra or Kolmogorov–Smirnov ([17]). For the non-Gaussian
stable distribution one can apply strict testing procedure for an arbitrary
distribution or to employ specific properties of the stable law. We concentrate
here on the latter case. One way to test for stability is to check the distinctive
property of stable random variables, namely summability, see, e.g., [4]. The
second array of tests checks the power-law behaviour of the underlying data.
In this context an issue arises of recognizing stable distributions with the
stability index close to 2. In this case, if the sample is not long enough, the
shape of empirical PDF is close to a Gaussian ([17]), and both log-log scale
analysis and standard estimators of the power-law exponent estimators like
Hill give overestimated value of α for the number of observation less than 106

([78]). In applications, the number of observations is often less.
The problem of recognizing α-stable distribution with α close to 2 from

experimental data when the sample size of available data is not large, was
addressed in [17]. Following [17] we introduce a testing procedure combining
a simple visual test based on empirical fourth moment, and the Anderson–
Darling (AD) and Jarque–Bera (JB) statistical tests. Namely, we calculate
the empirical cumulative fourth moment (ECFM) of the simulated data sets,
which for a sample of observations {x1, . . . , xn} is defined as follows:

(E.1) C(k) =
1

k

k∑
i=1

(xi − x̄)4, k = 1, 2, ..., n,

where x̄ is the mean of the random sample.
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Formula (E.1) can be calculated for any sample obtained from an arbitrary
probability distribution. For a fixed k it forms a random variable. For distri-
butions with finite fourth moment (e.g. Gaussian), the ECFM, as a function
of k, converges to a constant, whereas for distributions with infinite fourth
moment (e.g. stable with α < 2) it diverges to infinity. The latter, for a fi-
nite sample, can be observed as an irregular chaotic behaviour. The resulting
procedure is presented in the following algorithm.

Algorithm 7. Recognizing α-stable distribution with α close to 2 ([17])
(i) Calculate the ECFM for the sample.
(ii) If the ECFM tends to a constant, we check for the Gaussian distribution

by using the JB test.
(a) If its p-value exceeds the confidence level (usually 5%), then we can

assume the underlying distribution of time series is Gaussian. In
this case we estimate its parameters by using the standard maximum
likelihood estimation method.

(b) If the JB test shows the data cannot be modeled by a Gaussian dis-
tribution, then we test them for the stable distribution.
1. If the AD test gives the p-value that exceeds the confidence level,

then we can assume the time series can be described by the α-
stable distribution. In this case we estimate its parameters via the
regression approach.

2. If the stability is rejected, other distributions have to be take into
considerations.

(iii) If the ECFM exhibits chaotic-like behaviour, then we test for the stable
distribution by means of AD test.
(a) If the p-value is greater than the confidence level, then we can assume

the data follow the stable law. In this case we estimate its parameters
via the regression approach.

(b) If the stability is rejected, other distributions have to be take into
considerations.

Appendix F. Self-similarity index estimator based on sample
p-variation

Let us now discuss the idea of p-variation, p > 0. The concept of p-variation
generalizes the well-known notions of total or quadratic variations, which have
found applications in various areas of physics, mathematics and engineering
([57, 76]). Let X(t) be a stochastic process analyzed on the time interval [0, T ].
Then, the p-variation of X(t) is defined as the limit of sum of increments of
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X(t) taken to the p-th power over all partitions P of the interval [0, T ], when
the mesh of the partitions goes to zero. When p = 1 it reduces to the total
variation, whereas p = 2 leads to the notion of quadratic variation.

In practice, one calculates sample p-variation ([15]) taking differences be-
tween every m-th element of the data.

Let {Xi, i = 0, . . . , N} be a sample of length N + 1. Sample p-variation
V

(p)
m for lag m is defined as

(F.1) V (p)
m =

N/m−1∑
k=0

∣∣X(k+1)m −Xkm

∣∣p .
The following fact describes the behaviour of the p-variation for the par-

tial sum process of the ARFIMA time series. Let {Yi, i = 0, . . . , N} be a
ARFIMA(p, d, q) time series with α-stable noise and 1 < α ≤ 2. We define its
partial sum process {Xk =

∑k
i=1 Yi, k = 0, . . . , N}. Then for large N/m: if

α = 2, then V (p)
m ∼ mHp−1; if 1 < α < 2, then V (p)

m ∼ mHp−1 for d > 0 and
V

(p)
m ∼ mp(H−1/α) for d < 0. The symbol ∼ denotes similarity in distribution

and H = d+ 1/α.
Since the normalized partial sum of the ARFIMA process converges to a

FLSM with H = d + 1/α ([74]), we obtain the following fact. Let {Xi, i =
0, . . . , N} be a FLSM with 0 < H < 1 and 1 < α ≤ 2. Then for large N/m:
if α = 2, then V (p)

m ∼ mHp−1; if 1 < α < 2, then V (p)
m ∼ mHp−1 for H > 1/α

and V
(p)
m ∼ mp(H−1/α) for H < 1/α. The symbol ∼ denotes similarity in

distribution.
This implies that, in the case of Gaussian ARFIMA or FBM for p > 1/H,

sample p-variation is a strictly increasing function of m (it tends to zero as m
gets smaller), whereas for p < 1/H it is a strictly decreasing function of m (it
diverges to infinity whenm gets smaller). For a stable non-Gaussian ARFIMA
or FLSM the situation differs from the Gaussian case and depends on whether
d is positive or negative. It appears that the sample p-variation is always a
decreasing function with respect to m when d < 0. If d > 0, the situation is
the same as in the Gaussian case: if p > 1/H, then sample p-variation is an
increasing function of m, if p < 1/H it is a decreasing function of m.

Now, we introduce a method of estimation of the self-similarity index H
based on sample p-variation for the ARFIMA process and fractional stable
motion. For d > 0 the method applies to both Gaussian (α = 2) and non-
Gaussian (α < 2) cases. For d < 0 it is defined only for the Gaussian case.
The idea of the method is to find p = 1/H for which V

(p)
m as a function of

m changes its monotonic behaviour, i.e. becomes constant. To this end, as a
simple tool, we propose to calculate difference between V (p)

m for the smallest
m, namely m = 1, and V (p)

m for a larger m (but not too large to make sure
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N/m is sufficiently high), e.g. m = 8. This is done for different p’s. The
smallest distance defines the value of the estimator p̂ and consequently Ĥ.
The procedure can be summarized as follows.

Algorithm 8. Estimation of the self-similarity index based on sample
p-variation ([7])

(i) Calculate V (p)
m for p = 1./(0.01 : 0.01 : 0.99) and m = 1 and 8.

(ii) Find p̂ that minimizes
(
V

(p)
8 − V (p)

1

)2
.

(iii) The estimated value Ĥ = 1/p̂.

The introduced p-variation estimator seems to be consistent and works
remarkably well for the FBM case. It is worth-mentioning that the variance
of the estimator is very low in comparison to other methods of estimation of
the self-similarity index ([7]).

Finally, we note that the idea of p-variation can be used to distinguish
between two mechanisms leading to anomalous diffusion, namely FBM and
CTRW. In [57] a simple test, based on a realization of the unknown process,
was introduced and applied to the data of Golding and Cox ([30]).
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