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CHARACTERIZATIONS OF ROTUNDITY AND
SMOOTHNESS BY APPROXIMATE ORTHOGONALITIES

Tomasz Stypuła, Paweł Wójcik

Abstract. In this paper we consider the approximate orthogonalities in real
normed spaces. Using the notion of approximate orthogonalities in real normed
spaces, we provide some new characterizations of rotundity and smoothness of
dual spaces.

1. Introduction

Let (X, ‖ · ‖) be a real normed space. A well-known theorem states
that if X∗ is rotund, then X is smooth. The aim of this paper is to extend this
theorem and to bring some results concerning the approximate orthogonalities.

We define two mappings ρ′+, ρ′− : X ×X → R:

ρ′±(x, y) := lim
t→0±

‖x+ ty‖2 − ‖x‖2

2t
= ‖x‖ lim

t→0±

‖x+ ty‖ − ‖x‖
t

.

This mappings are called norm derivatives. Convexity of the norm yields that
the above definitions are meaningful. Now, we recall their useful properties
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(the proofs can be found in [1] and [4]):

∀x,y∈X ∀α∈R : ρ′±(x, αx+ y) = α‖x‖2 + ρ′±(x, y);(nd1)

∀x,y∈X ∀α≥0 : ρ′±(αx, y) = αρ′±(x, y) = ρ′±(x, αy);(nd2)

∀x,y∈X ∀α<0 : ρ′±(αx, y) = αρ′∓(x, y) = ρ′±(x, αy);(nd2’)

∀x,y∈X : |ρ′±(x, y)| ≤ ‖x‖·‖y‖;(nd3)

∀x∈X : ρ′±(x, x) = ‖x‖2.(nd4)

Moreover, mappings ρ′+, ρ′− are continuous with respect to the second variable,
but not necessarily with respect to the first one.

Due to G. Lumer [7] and J.R. Giles [6] in every real normed space (X, ‖·‖),
there exists a mapping [·|·] : X ×X → R satisfying the following properties:

∀x,y,z∈X ∀α,β∈R : [αx+ βy|z] = α [x|z] + β [y|z] ;(sip1)

∀x,y∈X ∀α∈R : [x|αy] = α [x|y] ;(sip2)

∀x,y∈X : | [x|y] | ≤ ‖x‖·‖y‖;(sip3)

∀x∈X : [x|x] = ‖x‖2.(sip4)

Such a mapping is called a semi-inner product (s.i.p.) in X (generating the
norm ‖ · ‖). There may exist infinitely many different semi-inner products in
X. There is a unique one if and only if X is smooth (i.e., there is a unique
supporting hyperplane at each point of the unit sphere SX). If X is an inner
product space, the only s.i.p. on X is the inner product itself.

If [·|·] is a given semi inner product in X, then

(1.1) ρ′−(x, y) ≤ [y|x] ≤ ρ′+(x, y), x, y ∈ X.

It is known that X is smooth if and only if ρ′+(x, y) = ρ′−(x, y) = [y|x] for all
x, y ∈ X.

Let X∗ denote the set of all linear and continuous functions from X into
the field R. Suppose that x is a point on the unit sphere SX and fix the semi-
inner product [·|·]. Then the mapping ϕx(·) := [·|x] is a supporting functional
at the point x. Conversely, every supporting functional at the point x ∈ SX
can be written in this form (cf. [4]).

Applying (1.1) we obtain

(1.2) ρ′−(x, ·) ≤ ϕx(·) ≤ ρ′+(x, ·) for all supporting functional ϕx at x.
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There are also connections between norm derivatives and the semi-inner
products. Namely, the following result holds (cf. [4]).

Theorem 1.1. Let (X, ‖ · ‖) be a real normed space and Sp the set of all
s.i.p. on X which generate the norm ‖ · ‖. Then

ρ′+(x, y) = sup {ϕx(y) : ϕx is a supporting functional}

= sup

{[
y
∣∣∣ x‖x‖

]
: [·|·] ∈ Sp

}
,

ρ′−(x, y) = inf {ϕx(y) : ϕx is a supporting functional}

= inf

{[
y
∣∣∣ x‖x‖

]
: [·|·] ∈ Sp

}
,

for all vectors x, y in X.

Assume that m ∈ SX . Let us consider the set

Fm := {ϕ ∈ X∗ : ϕ is a supporting functional at the point m} .

Using (1.2), we have

(1.3) ∀u∗,w∗∈Fm
∀y∈X |u∗(y)− w∗(y)| ≤ ρ′+(m, y)− ρ′−(m, y).

In a normed space with a given semi inner product [·|·] a semi-orthogonality
and an approximate semi-orthogonality (ε-semi-orthogonality, with ε ∈ [0, 1))
of vectors x and y is naturally defined by:

x⊥sy :⇔ [y|x] = 0; x⊥εsy :⇔ | [y|x] | ≤ ε‖x‖·‖y‖.

The notions of a ρ+,ρ−-orthogonality and an approximate ρ+,ρ−-orthogonality
(with ε ∈ [0, 1)) were defined in [2, 3] as follows:

⊥ρ+y :⇔ ρ′+(x, y) = 0, x⊥ερ+y :⇔ |ρ′+(x, y)| ≤ ε‖x‖·‖y‖,

x⊥ρ−y ⇔ ρ′−(x, y) = 0, x⊥ερ−y :⇔ |ρ′−(x, y)| ≤ ε‖x‖·‖y‖.

If (X, 〈·|·〉) is a real inner product space, then 〈y|x〉 = [y|x] = ρ′±(x, y) for
arbitrary x, y ∈ X. Hence we have ⊥ = ⊥s = ⊥ρ+ = ⊥ρ− and ⊥ε = ⊥εs =
⊥ερ+ = ⊥ερ− .

We may consider the condition ∀x,y∈X x⊥εay ⇒ x⊥εby and to shorten the
notation we write ⊥εa ⊂ ⊥εb (for ⊥εa,⊥εb ∈ {⊥ερ− ,⊥

ε
ρ+
,⊥εs}).
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Theorem 1.2. Let X be a real normed space and let ε ∈ [0, 1). Then the
following conditions are equivalent

(a) ⊥ερ+ ⊂ ⊥
ε
ρ−

(b) ⊥ερ+ ⊃ ⊥
ε
ρ−

(c) ⊥ερ+ = ⊥ερ− (j) ρ′+ = ρ′−
(d) ⊥ερ+ ⊂ ⊥

ε
s (e) ⊥ερ+ ⊃ ⊥

ε
s (f) ⊥ερ+ = ⊥εs (k) X is smooth.

(g) ⊥ερ− ⊂ ⊥
ε
s (h) ⊥ερ− ⊃ ⊥

ε
s (i) ⊥ερ− = ⊥εs

The proof of this result was given in [2] in the case of ε = 0. In [3, Theorem
3.3] Chmieliński and the second author proved that (a),(b),(c) and (j),(k) are
mutually equivalent. The lacking links (d)⇔(e)⇔ . . .⇔(i)⇔(k) were given in
[8, Theorem 1]. By Theorem 1.2, the condition ⊥ρ+ ⊂ ⊥ρ− (or ⊥ερ+ ⊂ ⊥

ε
ρ−

)
yields the smoothness of the norm. The natural question is: What about real
normed linear spaces which satisfy ⊥ρ+ ⊂ ⊥ερ− or ⊥ρ− ⊂ ⊥ερ+? We explore
such questions in the next section. Namely, we will prove that the length of
the segments on the unit sphere SX∗ affects the property ⊥ρ+ ⊂ ⊥ερ− in X.

2. Main results

Assume that X is a real normed space such that dimX ≥ 2. The
following conditions are equivalent:

(i) ⊥ρ+ ⊂ ⊥
ε
ρ−
, (ii) ⊥ρ− ⊂ ⊥

ε
ρ+
.

Indeed, suppose that ⊥ρ+ ⊂ ⊥ερ− holds and let x⊥ρ−y. Applying (nd2’) we
get −x⊥ρ+y. Hence −x⊥ερ−y. Applying again (nd2’) we get x⊥ερ+y. The proof
of the reverse is the same.

Let SX , SX∗ denote unit spheres in X, X∗, respectively. We introduce a
geometric constant Eρ(X),

Eρ(X) := inf
{
ε ∈ [0, 1] : ⊥ρ+ ⊂ ⊥

ε
ρ−

}
.

Using (nd2) we may rewrite the above as

Eρ(X) = inf
{
ε ∈ [0, 1] : ∀x,y∈SX

(
ρ′+(x, y) = 0 ⇒ |ρ′−(x, y)| ≤ ε

)}
.

Hence

Eρ(X) = sup
{∣∣ρ′−(x, y)∣∣ : x, y ∈ SX , ρ′+(x, y) = 0

}
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and also

Eρ(X) = inf
{
ε ∈ [0, 1] : ⊥ρ− ⊂ ⊥

ε
ρ+

}
= sup

{∣∣ρ′+(x, y)∣∣ : x, y ∈ SX , ρ′−(x, y) = 0
}
.

A normed space (X, ‖ · ‖) is rotund or strictly convex if

∀a,b∈SX
conv{a, b}⊂SX ⇒ a = b.

We consider a second constant R(X) defined as follows

R(X) := sup {‖a− b‖ : conv{a, b}⊂SX} .

We have, of course, 0 ≤ Eρ(X) ≤ 1 and 0 ≤ R(X) ≤ 2. In particular spaces
the upper bounds of Eρ(X) and R(X) are attained (see Example 2.5). On the
other hand, these constants can be arbitrary small (see Example 2.7). Observe
that,

X is smooth ⇔ Eρ(X) = 0; X is rotund ⇔ R(X) = 0.

The first statement follows from Theorem 1.2, and the second is obvious.
It is known (cf. [5]) that for any normed space X, if X∗ is rotund, then X

is smooth, which can be written as

(2.1) R(X∗) = 0 ⇒ Eρ(X) = 0

which is a motivation for our results.

Lemma 2.1. Let ϕx, ψx be supporting functionals at a point x ∈ SX . Then
conv{ϕx, ψx} ⊂ Fx.

Proof. Fix λ ∈ [0, 1]. It is easy to verify that ‖λϕx+(1−λ)ψx‖ ≤ 1. On
the other hand we have λϕx(x)+(1−λ)ψx(x) = 1, thus ‖λϕx+(1−λ)ψx‖ = 1
and hence λϕx + (1− λ)ψx ∈ Fx. �

Lemma 2.2. Assume that X is reflexive. Let a∗, b∗ ∈ SX∗ . Suppose that
conv{a∗, b∗} ⊂ SX∗ . Then, there is m ∈ SX such that conv{a∗, b∗} ⊂ Fm.
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Proof. By the assumptions, ‖a∗‖ = ‖b∗‖ = 1 and ‖12a
∗ + 1

2b
∗‖ = 1.

Since X is reflexive, the functional 1
2a
∗ + 1

2b
∗ attains its norm. Therefore,

1
2a
∗(m) + 1

2b
∗(m) = 1 for some m ∈ SX . Suppose that a∗(m) < 1. This

implies that b∗(m) > 1 which is a contradiction to ‖b∗‖ = 1. Therefore,
a∗(m) = b∗(m) = 1, and consequently a∗, b∗ ∈ Fm. Applying Lemma 2.1 we
get conv{a∗, b∗} ⊂ Fm. �

Now, we are ready to present a generalization of the statement (2.1). The
main results of this section are given in the two following theorems.

Theorem 2.3. For an arbitrary real normed space X we have

(2.2) Eρ(X) ≤ R(X∗).

Proof. We have to show that

Eρ(X) ≤ sup {‖u∗ − w∗‖ : conv{u∗, w∗} ⊂ SX∗} .

Assume, contrary to our claim, that

(2.3) ‖u∗ − w∗‖ ≤ εo < Eρ(X) for all segments conv{u∗, w∗} ⊂ SX∗ .

Suppose that x ∈ SX . Let ϕx and ψx be two supporting functionals at the
point x. Using Lemma 2.1 we get conv{ϕx, ψx} ⊂ SX∗ . It follows from (2.3)
that

(2.4) ∀y∈SX
|ϕx(y)− ψx(y)| ≤ εo.

Now, fix y ∈ SX . Passing to the supremum over ϕx ∈ Fx and passing
to the infimum over ψx ∈ Fx (see (1.2) and Theorem 1.1), we can obtain∣∣ρ′+(x, y)− ρ′−(x, y)∣∣ ≤ εo (for all x, y ∈ SX). Now, for arbitrary x, y ∈ X,
putting x

‖x‖ ,
y
‖y‖ in place of x, y in the above inequality and applying (nd2),

we get

(2.5) ∀x,y∈X
∣∣ρ′+(x, y)− ρ′−(x, y)∣∣ ≤ εo‖x‖·‖y‖.

It follows from (2.5) that ⊥ρ+ ⊂ ⊥εoρ− . Thus we have E
ρ(X) ≤ εo, a contradic-

tion to εo < Eρ(X). The proof is complete. �

The inequality (2.2) can be sharp, we will see it in Example 2.5.
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Theorem 2.4. Let X be a reflexive Banach space. Then

R(X∗) ≤ 2Eρ(X).

Proof. Define E+ := {ε ∈ [0, 1] : ⊥ρ+ ⊂ ⊥ερ−} and fix ε ∈ E+. Fix

x, y ∈ X \ {0}. Notice that, due to (nd1), we have x⊥ρ+

(
−ρ
′
+(x,y)

‖x‖2 x+ y
)
.

Therefore x⊥ερ−
(
−ρ
′
+(x,y)

‖x‖2 x+ y
)
, and hence

∣∣∣∣ρ′−(x, −ρ′+(x, y)‖x‖2
x+ y

)∣∣∣∣ ≤ ε‖x‖·∥∥∥∥−ρ′+(x, y)‖x‖2
x+ y

∥∥∥∥
≤ ε‖x‖·

(
|ρ′+(x, y)|
‖x‖2

‖x‖+ ‖y‖
)

= ε|ρ′+(x, y)|+ ε‖x‖·‖y‖

≤ ε‖x‖·‖y‖+ ε‖x‖·‖y‖ = 2ε‖x‖·‖y‖,

by (nd3). Thus we obtain

(2.6) ∀x,y∈X
∣∣ρ′+(x, y)− ρ′−(x, y)∣∣ ≤ 2ε‖x‖·‖y‖.

Now, we show that ‖a∗ − b∗‖ ≤ 2ε for all segments conv{a∗, b∗} ⊂ SX∗ .
Fix a segment conv{a∗, b∗} ⊂ SX∗ . Applying Lemma 2.2 there is a vector
m ∈ SX such that a∗, b∗ ∈ Fm. Thus, we get

∀y∈SX
|a∗(y)− b∗(y)| ≤

∣∣ρ′+(m, y)− ρ′−(m, y)∣∣ ≤ 2ε,

where the first inequality follows from (1.3) and the second from (2.6). Passing
to the supremum over y ∈ SX we get ‖a∗ − b∗‖ ≤ 2ε. Finally, passing to
infimum over ε ∈ E+ we get ‖a∗ − b∗‖ ≤ 2Eρ(X) and the result follows. �

From Theorem 2.4 we get a sufficient condition for X to be a nonreflexive
Banach space. Namely, if R(X∗) > 2Eρ(X), then X is not reflexive. In the
next example we show that the estimate in Theorem 2.4 is sharp.

Example 2.5. Consider the space V := l∞2 = (R2, ‖ · ‖∞) with the norm
‖(x1, x2)‖∞ := max{|x1|, |x2|}. Let (1, 1), (−1, 0) ∈ V . It is easy to check that

(1, 1)⊥ρ+(−1, 0) and ρ′−((1, 1), (−1, 0)) = −1.

In particular, this shows that ⊥ρ+ * ⊥ερ− for all ε ∈ [0, 1). Therefore Eρ(V ) =

1. On the other hand, we have V ∗ = (l∞2 )∗ = l12 where l12 = (R2, ‖ · ‖1) with
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the norm ‖(x1, x2)‖1 := |x1|+ |x2|. For the vectors (1, 0), (0, 1) ∈ V ∗ we have
conv{(1, 0), (0, 1)} ⊂ SV ∗ and ‖(1, 0)− (0, 1)‖ = 2, thus R(V ∗) = 2. Therefore
R (V ∗) = 2Eρ(V ).

The reflexivity is necessary to obtain the inequality R(X∗) ≤ 2Eρ(X).
Indeed, there exists a smooth nonreflexive Banach space Y such that the
space Y ∗ is not rotund (see [5]). Thus R(Y ∗) > 0 and Eρ(Y ) = 0. Hence
R(Y ∗) > 2Eρ(Y ).

Finally, the rotundity of X∗ can be characterized as follows. Combining
Theorems 2.3 and 2.4 we obtain the following corollary.

Corollary 2.6. For an arbitrary reflexive Banach space X we have

(2.7) Eρ(X) ≤ R(X∗) ≤ 2Eρ(X).

Hence,
(i) if X is reflexive, X∗ is rotund if and only if X is smooth;
(ii) if X is reflexive, X∗ is smooth if and only if X is rotund.

Proof. It follows from (2.7) that (i) holds. Using (2.7) for X∗ we have
Eρ(X∗) ≤ R(X) ≤ 2Eρ(X∗) and we can easily obtain (ii). �

Example 2.7. Fix ε ∈ (0, 1) and consider the space Y := R2 with the
norm defined by its unit ball

K :=

{
(x1, x2) ∈ R2 : x21 + x22 ≤ 1 ∧ |x1| ≤

√
1−

(ε
2

)2}
.

It is easy to check that R(Y ) = ε. Since dimY <∞, then there exists a space
X such that X∗ = Y . Thus we have R(X∗) = ε. According to Corollary 2.6
we have ε

2 ≤ E
ρ(X) ≤ ε.
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