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ON THE NORMAL STABILITY OF FUNCTIONAL
EQUATIONS

Zenon Moszner

Abstract. In the paper two types of stability and of b-stability of functional
equations are distinguished.

1. The translation equation

It is possible to distinguish two types of the stability of functional equations
and the same is possible for the b-stability. We will show this difference for
the translation equation and for the dynamical system. The equation

(1) F (F (α, x), y) = F (α, xy),

where F : S×G→ S, S is an arbitrary metric space with the metric designed
|a − b| (not necessary the norm) and G is a groupoid with the operation “·”,
is said to be the translation equation, which has many applications [13].

Definition 1. Equation (1) is said to be stable in the Ulam–Hyers sense
(in short “stable”) if for every ε > 0 there exists δ > 0 such that for every
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function H : S ×G→ S such that

(2) |H(H(α, x), y)−H(α, xy)| ≤ δ for α ∈ S and x, y ∈ G

there exists the solution F of (1) such that

(3) |H(α, x)− F (α, x)| ≤ ε for (α, x) ∈ S ×G.

This definition is equivalent to the definition below.

Definition 1*. Equation (1) is said to be stable if there exists a function
Φ: (0,+∞) → (0,+∞) such that for every ε > 0 and every function H : S ×
G→ S if

|H(H(α, x), y)−H(α, xy)| ≤ Φ(ε) for α ∈ S and x, y ∈ G,

then there exists a solution F of (1) such that

|H(α, x)− F (α, x)| ≤ ε for α ∈ S and x ∈ G.

This function Φ (the measure of stability), if it exists, is not unique
since the function aΦ for every function a : (0,+∞) → (0, 1] is a measure
of stability too. If there exists an unbounded measure of stability Φ (i.e.,
sup Φ((0,+∞)) = +∞), then the stability is said to be normal. This measure
Φ is said to be maximal if it does not exist any measure of stability Φ1 for
which Φ1(ε0) > Φ(ε0) for some ε0 > 0.

Remark 1. Let I(ε) for ε > 0 be the set of δ > 0 such that for every
function H if (2) is satisfied, then (3) is true for some solution F of (1). If
the equation (1) is stable, then I(ε) 6= ∅ for every ε > 0. It is easy to see
that I(ε) is an interval with inf I(ε) = 0 (if δ0 ∈ I(ε) and 0 < δ < δ0, then
δ ∈ I(ε)) and that I(ε1) ⊂ I(ε2) for ε1 < ε2. From here the equation (1) is
normally stable if and only if the set

⋃
ε>0 I(ε) is unbounded. If there exists

an unbounded measure of stability, then there exists the bounded measure of
stability. On the other hand if there exists a bounded measure of stability,
then the unbounded measure of stability does not necessarily exist.

Example 1. It is known that for the Cauchy’s equation of the additive
function f(x+ y) = f(x) + f(y), where f : R→ R, the function Φ(ε) = ε is a
measure of stability. This measure is maximal. Indeed, assume that there exists
a measure of stability Φ1 of this equation for which Φ1(ε) = ε1 > ε for any ε.
Then for every function g : R → R if |g(x + y) − g(x) − g(y)| ≤ Φ1(ε) = ε1,
there exists an additive function f such that |g(x) − f(x)| ≤ ε. Thus for
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g(x) = ε1 there exists an additive function f such that |ε1 − f(x)| ≤ ε. From
here f(x) = 0 as the bounded additive function, thus ε1 ≤ ε and we have
a contradiction.

The maximal measure of stability needs not to exist, e.g., there is no
maximal measure for the equation for which every function is the solution
(see 2.12 in this paper).

Proposition 1. If equation (1) is stable, then there exists the maximal
measure of stability of (1) if and only if sup I(ε) ∈ I(ε) for every ε > 0.

Proof. If sup I(ε) ∈ I(ε) for every ε > 0, then the function Φ(ε) =
sup I(ε) is evidently the maximal measure of stability. If there exists an ε0 > 0
such that sup I(ε0) is not in I(ε0) and Φ is a measure of stability, then Φ(ε0) <
sup I(ε0). The function Φ1 such that Φ1(ε) = Φ(ε) for ε 6= ε0 and Φ1(ε0) ∈
(Φ(ε0), sup I(ε0)) is the measure of stability for which Φ(ε0) < Φ1(ε0). �

Definition 2. Equation (1) is said to be b-stable if for every function
H : S×G→ S such that the function |H(H(α, x), y)−H(α, xy)| is bounded,
there exists a solution F of (1) such that the function |H(α, x) − F (α, x)| is
bounded too, i.e., if for every function H : S×G→ S such that there exists a
δ > 0 for which (2) is satisfied, there exists an ε > 0 for which (3) is satisfied
for a solution F of (1).

If a := inf{|α − β| : α, β ∈ S, α 6= β} > 0, then equation (1) is stable,
since it is enough to put δ < a in Definition 1. In this case equation (1) is
not necessarily b-stable (see Example 1). Hence Definitions 1 and 2 are not
equivalent.

The stability of the translation equation is considered in the papers [7, 11,
14, 18, 20, 21].

In the definition of b-stability ε depends on δ and on the function H. If ε
does not depend precisely on the function H the b-stability is called uniform.
We have the following definition.

Definition 3. Equation (1) is said to be uniformly b-stable if for every
δ > 0 there exists ε > 0 such that for every function H : S × G → S which
satisfies (2) there exists a solution F of (1) such that (3) is satisfied.

This definition is equivalent to the definition below.

Definition 3*. Equation (1) is said to be uniformly b-stable if there exists
a function Ψ: (0,+∞)→ (0,+∞) such that for every δ > 0 and every function
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H : S ×G→ S if

|H(H(α, x), y)−H(α, xy)| ≤ δ for α ∈ S and x, y ∈ G,

then there exists a solution F of (1) such that

|H(α, x)− F (α, x)| ≤ Ψ(δ) for α ∈ S and x ∈ G.

The function Ψ (the measure of uniform b-stability), if exists, is not unique
since the function aΨ for every function a : (0,+∞)→ [1,+∞) is “good” too.
If there exists a measure of uniform b-stability Ψ such that inf Ψ((0,+∞)) = 0
(i.e., the function 1/Ψ is unbounded), then the uniform b-stability is said to
be normal. The measure Ψ is said to be minimal if there is no measure of
uniform b-stability Ψ1 for which Ψ1(δ0) < Ψ(δ0) for any δ0 > 0.

Remark 2. Let J(δ) for δ > 0 be the set of ε > 0 such that for every
function H if (2) is satisfied, then (3) is true for some solution F of (1). If
equation (1) is uniformly b-stable, then J(δ) 6= ∅ for every δ > 0. It is easy
to see that J(δ) is an interval with sup J(δ) = +∞ and that J(δ1) ⊂ J(δ2)
for δ1 > δ2. So equation (1) is normally uniformly b-stable if and only if
inf
⋃
δ>0 J(δ) = 0.

If there exists a measure of uniform b-stability Ψ such that 1/Ψ is un-
bounded, then there exists a measure of uniform b-stability Ψ1 such that
1/Ψ1 is bounded. On the other hand if there exists a measure of uniform b-
stability Ψ1 such that 1/Ψ1 is bounded, then a measure of uniform b-stability
Ψ such that 1/Ψ is unbounded does not necessarily exist.

The following proposition holds true and its proof is analogous to that of
Proposition 1.

Proposition 2. If equation (1) is uniformly b-stable, then there exists
the minimal measure of uniform b-stability of this equation if and only if
inf J(δ) ∈ J(δ) for every δ > 0.

Remark 3. The stability is in fact uniform since δ does not depend on
the function H in Definition 1. The non uniform stability, i.e., the following
property

for every ε > 0 and for every function H : S × G → S there
exists a δ > 0 such that if (2) is satisfied, then there exists a
solution F of (1), for which (3) is satisfied,

has no interest since every translation equation is stable in this sense.
Indeed, if the function H is the solution of (1), then δ may be arbitrary.

If not, there exist α0, x0, y0 such that |H(H(α0, x0), y0)−H(α0, x0y0)| 6= 0
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and inequality (2) is not true for α0, x0, y0 and δ such that 0 < δ <
|H(H(α0, x0), y0)−H(α0, x0y0)|.

Remark 4. If the measure of stability Φ is a bijection, then this stability is
normal and the function Φ−1 is a bijection too, thus the equation is normally
uniformly b-stable. We have this situation for equation (1) if S is an arbitrary
metric space and the groupoid G has only one element or it is xy = x for
x, y ∈ G (here Φ(α) = α) [16]. We have the same result for the measure of
b-stability.

Proposition 3. If the stability of (1) is normal, then this equation is
uniformly b-stable.

Proof. Indeed, assume that the function |H(H(α, x), y) − H(α, xy)| is
bounded by δ. There exists an ε such that Φ(ε) ≥ δ and since (1) is normally
stable, then there exists a solution F of (1) such that |H(α, x)−F (α, x)| ≤ ε,
thus |H(α, x)− F (α, x)| is bounded. �

Example 2. Equation (1) with S = Z with the usual metric and with
G as the free group generated by two elements a, b is not b-stable [15]. This
equation is stable since inf{|α − β| : α, β ∈ Z, α 6= β} = 1 > 0. It is not
normally stable by Proposition 1.

It is possible to give the proof of this fact without using the result in [15].
Suppose that there exists the unbounded measure of stability Φ. Thus there
exists an ε > 0 such that Φ(ε) ≥ 1. Assume that the element x ∈ G is
reduced, i.e., in x do not appear the pairs of the form aa−1, a−1a, bb−1, b−1b
and it is noted by the power of a and b only with the indices 1 or −1. Let
g : G → Z be the function such that g(x) = r(x) − s(x), where r(x) is the
number of pairs ab in x and s(x) is the number of pairs b−1a−1 in x. We have
g(xy)− g(x)− g(y) ∈ {−1, 0, 1} (see [8] and [1]). If H(α, x) = α+ g(x), then
H(H(α, x), y)−H(α, xy) ∈ {−1, 0, 1}, thus |H(H(α, x), y)−H(α, xy)| ≤ 1 ≤
Φ(ε). Then there exists a solution F of (1) such that |H(α, x)− F (α, x)| ≤ ε.
We have for n ∈ Z

F (α, an)−H(α, an) = F (α, an)− α− g(an) = F (α, an)− α.

Thus the set S∗ = {F (α, an) − α : α, n ∈ Z} is bounded. The function
K(α, n) = F (α, an) is a solution of the equation

K(K(α, n),m) = K(α, n+m).
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Thus it is of the form (see [14])

K(α, n) = h−1k (hk(f(α)) + n) for f(α) ∈ Sk,

where f : Z→ Z is the function such that f(f) = f , f(Z) =
⋃
k∈K Sk, Sk 6= ∅,

Sk ∩ Sl = ∅ for k 6= l and for every k ∈ K there exists the subgroup Zk of the
group Z such that cardSk = indZk and hk : Sk → Z/Zk is a bijection.

Let α ∈ Z be fixed and f(α) ∈ Sk. If Zk = {0}, then the function
K(α, ·) : Z→ Sk is an injection, thus the set {K(α, n) : n ∈ Z} is unbounded
as infinite (S = Z). We have a contradiction since this set is a subset of S∗.
There exists the element p > 0 in Sk, thus F (α, ap) = K(α, p) = f(α). By the
analogous consideration for b in place of a we obtain that there exists the ele-
ment q > 0 such that F (α, bq) = f(α). We put A = {(apbq)n : n ∈ Z, n > 0}.
Since F is the solution of (1) we have F (α, x) = f(α) for x ∈ A. Moreover,
g((apbq)n) = n, thus the function

F (α, (apbq)n)− α− g((apbq)n) = f(α)− α− n,

as the function of n, is unbounded. We have a contradiction since the function
|H(α, x)− F (α, x)| is bounded.

Proposition 4. If the b-stability of (1) is uniform and normal, then this
equation is normally stable.

Proof. There exists a measure of b-stability Ψ which satisfies the condi-
tion inf Ψ((0,+∞)) = 0. From here for every ε > 0 there exists a δ > 0 such
that Ψ(δ) ≤ ε. Assume that we have |H(H(α, x), y)−H(α, xy)| ≤ δ. Then we
obtain |H(α, x)− F (α, x)| ≤ Ψ(δ) ≤ ε for some solution F of (1). �

We consider the stability of (1) in an arbitrary class C of functions from
S ×G to S when the functions H and F are only in the class C.

B. Przebieracz has proved in [22], by using the result of J. Chudziak [7],
the following Ulam–Hyers stability theorem of equation (1) in the class of
continuous functions.

Theorem. Let I ⊂ R be an interval. Suppose that H : I × R → I is
continuous with respect to each variable and satisfies

(4) |H(H(α, x), y)−H(α, x+ y)| ≤ δ for α ∈ I and x, y ∈ R.

Then there exists a continuous solution F of the equation

(5) F (F (α, x), y) = F (α, x+ y)
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such that

(6) |H(α, x)− F (α, x)| ≤ 10δ for α ∈ I and x ∈ R.

This result, in this formulation, is in fact the statement that equation (5)
is normally uniformly b-stable in the class C of continuous functions, here
Ψ(δ) = 10δ. However, from here we get that equation (5) is also normally sta-
ble in the class C and Φ(ε) = ε/10. This class C is natural for the applications
of translation equation in dynamical systems or iteration groups.

Example 3. Equation (1) with S = [0, 1] with the usual metric and with
G as the group of two elements e, a (e is the unity element) is not stable in
the class C of the functions H : S ×G → S such that H(α, e) = α for α ∈ S
[16]. This class C is natural for those applications of translation equation, in
which there exists the unit e in the structure G. The equation in consideration
is uniformly b-stable (the function Ψ(δ) = 1 is “good” for Definition 3*). This
b-stability is not normal by Proposition 2.

It is possible to transfer the above considerations on systems of the func-
tional equations. We show this transfer for the dynamical system. The con-
tinuous function F : I × R → I, where I ⊂ R is an interval with nonempty
interior, is said to be a dynamical system if F satisfies equation (5) and

F (α, 0) = α for every α ∈ I.

This condition is for the solutions F of (5) equivalent to the condition

(7) F ′(α, 0) = 1 for α ∈ I.

In [19] the following Corollary 3.8 is proved:

Corollary. If the continuous function H : I × R → I satisfies inequal-
ity (4) for some δ ∈ (0, 25) and |H ′(α, 0)− 1| ≤ δ for α ∈ I, then there exists
a dynamical system F such that (6) is true.

For ε > 0 let Φ(ε) = 1
2 min{ ε5 ,

2
5}. If (4) with δ = Φ(ε) is satisfied and

|H ′(α, 0)− 1| ≤ Φ(ε) is true for α ∈ I, then by the above corollary |H(α, x)−
F (α, x)| ≤ 10Φ(ε) = min{ε, 2} ≤ ε for some dynamical system F . Hence
the function Φ is a measure of stability of the system and the function Φ is
bounded.

The stability in consideration is not normal for I unbounded since in this
case the system (5) and (7) is not b-stable. Indeed, for H(α, x) = α0 for an
α0 ∈ I we have |H(H(α, x), y) − H(α, x + y)| = 0 for α ∈ I, x, y ∈ R and
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|H ′(α, 0) − 1| = 1 for α ∈ I. Moreover, for every dynamical system F the
function |H(α, 0)− F (α, 0)| = |α0 − α| is unbounded.

For the interval I bounded the system in consideration is normally uni-
formly b-stable since the function Ψ(δ) = 10δ for 0 < δ < 2

5 and Ψ(δ) = |I|
(the length of I) for δ ≥ 2

5 is the measure of uniform b-stability of our system
and the function 1/Ψ is unbounded. Our system is normally stable too by the
function Φ(ε) = 1

2 min{ ε5 ,
2
5} for 0 < ε < |I| and Φ(ε) = ε for ε ≥ |I|.

Correction to the paper [19]. By the above the phrase “. . . as well as
uniformly b-stability (hence b-stability)” as the conclusion of [19, Corollary 3.8]
after the proof of this corollary in the paper [19, p. 290] is not true for I
unbounded (my mistake). Hence in the table in the end of the paper [19] (see
[23] too) for the b-stability and uniform b-stability in the case of def. 2 in
place of “for every I” must be “only for I bounded ”. The table must be thus
of the form

def. 1 def. 2 def. 3 def. 4 def. 5
(0, 1)& (0, 1)& (0, 1)& F (0, ·) (0, 1)& (0, 1)&

F (0, x) = x F (0, x) = 1 strictly F ′(0, x) F surjection
increasing exists

Ulam–Hyers only for I = R for every I for no I for every Istability
b-stability only for I

bounded or
I = R

only for I bounded for every Iuniform
b-stability
inverse for no Istability
inverse

only for I
bounded for no I only for I boundedb-stability

inverse uniform
b-stability
superstability only for I bounded
inverse only for I

bounded
for no I for every Isuperstability

hyperstability for no I
inverse for every Ihyperstability

Here (0, 1) signifies the equation (5) in the form F (s, F (t, x)) = F (t+s, x),
where F : R× I → I.

In this table the results on the different stabilities for the five equivalent
definitions of the dynamical system in the class of continuous functions are
presented.

Conclusion 1. Let C1 be the class of the functions from I×R to I and C2

the class of continuous functions in C1. The system of functional equations (5)
and (7) is normally stable in the class C2. This system is normally uniformly
b-stable in the class C1 (in the class C2) if and only if the interval I is bounded.
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Remark 5. We can consider the restricted uniform b-stability if δ in Defi-
nitions 3 and 3* is limited to δ < δ0 for some δ0 > 0 (there exists a δ0 > 0 such
that for every δ < δ0 . . .). Here the measure of restricted uniform b-stability
is the function Ψ from (0, δ0) to (0,+∞) and this b-stability is normal if
the function 1/Ψ is unbounded. By the above considerations the system of
equations (5) and (7) is restrictly uniformly b-stable for δ0 = 2

5 even for the
unbounded interval I and this b-stability is normal (Ψ(δ) = 10δ). The transla-
tion equation in Example 2 is normally restrictly uniformly b-stable for δ0 = 1
(e.g., Ψ(δ) = δ).

The number 2
5 can be replaced in [19, Corollary 3.8] and in the above by 1.

In this case the estimation of the function |H(α, x)−F (α, x)| in [19, Corollary
3.8] is δmax{6 + 2+δ

1−δ , 9} and it tends to +∞ if δ → 1− 0.
We notice that the restricted stability (there exists ε0 > 0 such that for

every ε < ε0 . . .) is equivalent to stability.
We complete the above table by the three lines for: restricted b-stability,

normal stability and normal uniform b-stability.

def. 1 def. 2 def. 3 def. 4 def. 5
restricted uniform only for I for every I

only for I for every Ib-stability (normal) bounded or I = R bounded

normal stability only for I = R only for I for no I for every Ibounded
normal uniform only for I only for I only for I for every Ib-stability bounded or I = R bounded bounded

Proof for restricted uniform b-stability.
1) The uniformly b-stable dynamical system is evidently restrictly uniformly

b-stable (but not inversely).
2) If in the proof of Theorem 4.3 in [19] we assume that 2b−2a ≤ δ for a δ > 0,

then we obtain the counter-example for the restricted uniform b-stability
in the case of the def.1 and if the unbounded interval I is bounded from
below (analogous from above).

3) For def. 2. The restricted uniform b-stability for every I in this case is
proved above.

4) For def. 3 and def. 4. The function H(t, x) = δ
π arctan[x− (a+ b)] + (a+ b)

for x, 2a, 2b ∈ I, a < b, 0 < δ ≤ 2b−2a, is strictly increasing, differentiable
function from I to the interval [(a + b) − δ

2 , (a + b) + δ
2 ] ⊂ [2a, 2b] ⊂ I

(def.3 and def.4 in the table). Thus |H(s,H(t, x))−H(t+ s, x)| ≤ δ. If the
interval I is unbounded, then there does no exist the dynamical system F
for which |H(0, x)− F (0, x)| = |H(0, x)− x| is bounded. �

The above restricted uniform b-stability is normal. For definitions 1, 3, 4, 5
this is the conclusion from the fact that the normal uniform b-stability implies
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evidently the normal restricted uniform b-stability. For def. 2 the function
Ψ(δ) = 10δ : (0, 25)→ (0,+∞) is the measure for which inf Ψ((0, 25)) = 0 (see
[19, Corollary 3.8]).

Proof for normal stability.
1) For def. 1. Here the measure of stability is Φ(ε) = ε

9 [22].
2) For def. 2. We have in this case the stability for every I thus there exists

the measure of stability Φ1 (not necesssarily unbounded). The function
Φ(x) = Φ1(x) for 0 < x ≤ |I| (the length of I) and Φ(x) = x for x > |I| is
the unbounded measure by the definition of the measure. This stability is
not normal for I unbounded. Indeed, assume that there exists the measure
of stability Φ of the dynamical system by def. 2 such that Φ(ε) ≥ 1 for any
ε > 0. The function H(t, x) = c for every (t, x) ∈ R×I and a c ∈ I satisfies
the inequalities

|H(s,H(t, x))−H(s+ t, x)| = 0 ≤ Φ(ε) and |H ′(0, x)− 1| = 1 ≤ Φ(ε),

thus there exists a dynamical system F such that |H(t, x) − F (t, x)| ≤ ε.
Since F (0, x) = x, hence |c− x| ≤ ε and we have a contradiction.

3) For def. 3 and def. 4. The dynamical system is not stable thus it is not
normally stable too.

4) For def. 5 see 1). �

Proof for normal uniform b-stability.
1) For def. 1. For I = R the function Ψ(δ) = 9δ is “good” [22]. For I bounded

the function Ψ(δ) = 10δ for δ ∈ (0, 25) and Ψ(δ) = |I| (the length of I)
for δ ∈ [25 ,+∞) is the measure of b-stability for which inf Ψ(0,+∞) = 0.
Indeed, if δ ∈ (0, 25), then by [19, Corollary 3.8] for every function H : R×
I → I such that

|H(s,H(t, x))−H(s+ t, x)| ≤ δ and |H ′(0, x)− 1| ≤ δ

for (t, x) ∈ R× I, there exists a solution F of our dynamical system such
that |H(t, x) − F (t, x))| ≤ Ψ(δ) for (t, x) ∈ R × I. If δ ∈ [25 ,+∞), then
|H(t, x)−F (t, x)| ≤ |I| = Ψ(δ) for (t, x) ∈ R×I and all functions H,F : I×
R→ I.

This normal uniform b-stability is only for I = R or I bounded since
the b-stability in this case is only for I = R or I bounded.

2) For def. 2, def. 3 and def. 4. See above. This normal uniform b-stability is
only for I bounded since the b-stability in this case is only for I bounded.

3) For def. 5. In this case the function Ψ(δ) = 9δ is “good” [22]. �
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2. Other functional equations

The definitions and the propositions above may be formulated by the nat-
ural way for arbitrary functional equations. We give some examples of this
reformulation.

2.1. If in the differential equation

(8) f ′(x) = H(f(x))

(the autonomous differential equation), where f : [a, b] → R, the function
H : R→ R is such that |H(u)−H(v)| ≤ L|u−v| for u, v ∈ R and L(b−a) < 1
for some L, then this equation is normally stable and normally uniformly
b-stable.

Indeed, let g : R→ R be such that

(9) |g′(x)−H(g(x))| ≤ δ

for a δ > 0 and x ∈ [a, b]. Thus we have∣∣∣g(x)− g(a)−
∫ x

a

H(g(t)) dt
∣∣∣ ≤ δ(b− a).

Let f be the solution of (8) such that f(a) = g(a), thus

f(x)− f(a)−
∫ x

a

H(f(t)) dt = 0,

therefore ∣∣∣g(x)− f(x)−
∫ x

a

[H(g(t))−H(f(t))] dt
∣∣∣ ≤ δ(b− a).

We obtain

|g(x)− f(x)| ≤
∣∣∣ ∫ x

a

[H(g(t))−H(f(t))] dt
∣∣∣+ δ(b− a)

≤
∣∣∣ ∫ x

a

L[g(t)− f(t)] dt
∣∣∣+ δ(b− a)

≤ (b− a)L sup
x∈[a,b]

|g(x)− f(x)|+ δ(b− a).



122 Zenon Moszner

Hence

|g(x)− f(x)| ≤ [1− L(b− a)]−1(b− a)δ.

For the unbounded interval I equation (8) is neither stable nor b-stable.
E.g., for the equation f ′(x) = 1 for f : I → R the function g(x) = (1 + δ)x for
δ > 0 is such that |g′(x)− 1| ≤ δ and |g(x)− (x+ c)| = |δx− c| is unbounded.

It is well-known (e.g., see [24]) the relation between equation (8) and the
translation equation. If the function H : R→ R is different from 0 and satisfies
the Lipschitz’s condition (the difference quotient of H is bounded), then the
solution of equation (8) for which f(0) = α is of the form f(x) = G−1[x +
G(α)], where G(y) =

∫
1

H(y) dy. The function F (α, x) = G−1[x + G(α)] is in
this case the solution of the translation equation (5) for which F (α, 0) = α,
thus it is the dynamical system. From the above table this dynamical system
(i.e., the system of the equations which determines this dynamical system) is
stable only for I = R (from [22] the measure Φ(ε) = ε

9 , thus this stability is
normal) and it is uniformly b-stable only for I bounded (here this b-stability is
not normal by the proposition for dynamical systems analogous to Proposition
4) or I = R (from [22] the measure Ψ(δ) = 9δ, thus this b-stability is normal
too). And vice versa. If F (α, x) = G−1[x+G(α)] and G′(y) 6= 0, then f(x) =
G−1[x+G(α)] for α fixed is the solution of the equation f ′(x) = [ 1

G′(y) ]y=f(x)
such that f(0) = α.

For the above function F (α, x) = G−1[x + G(α)] there exists an α0 such
that F (α0, x) is a continuous surjection of R onto I (in fact every α0 in I is
“good” here). By [7] equation (5) is for every interval I normally stable with
Φ(ε) = ε

9 and normally uniformly b-stable with Ψ(δ) = 9δ in the class C of
the functions H : I × R → I such that for every function H ∈ C there exists
α0 ∈ I for which H(α0, x) is the continuous surjection of R to I.

2.2. The equation

f(α, x) + f(f(α, x) + α, y) = f(α, x+ y)

for f : R×R→ R has applications [11] in the theory of Jabotinsky’s equations
[12]. For every δ ≥ 0 the function g : R×R→ R is the solution of the inequality

|g(α, x) + g(g(α, x) + α, y)− g(α, x+ y)| ≤ δ

if and only if the function G(α, x) = g(α, x)+α is the solution of the inequality

|G(G(α, x), y)−G(α, x+ y)| ≤ δ.



On the normal stability of functional equations 123

From here the equation in consideration is in the class of continuous functions
normally stable (with δ = ε/10) and normally uniformly b-stable by the result
of B. Przebieracz in [22].

2.3. The exponential Cauchy equation
J.A. Baker, J. Lawrence and F. Zorzitto have proved in [2] that for the

solution g : R → (0,+∞) of the inequality |g(x + y) − g(x)g(y)| ≤ δ we have
either |g(x)| ≤ max{4, 4δ} or g is the solution of the equation f(x + y) =
f(x)f(y). Thus this equation is uniformly b-stable. Let us assume that this
equation is stable. Then for ε = 1/2 there exists a δ0 such that for any function
g : R→ (0,+∞) if |g(x+ y)− g(x)g(y)| ≤ δ0, then there exists a solution f of
the equation such that |g(x)−f(x)| ≤ 1/2. This implication is satisfied for all
positive δ ≤ δ0, too. For g(x) = (1−

√
1− 4δ)/2, where 0 < δ ≤ min{1/4, δ0},

we have g(x+y)−g(x)g(y) = δ, thus there exists a solution f of the equation
in consideration such that |g(x) − f(x)| ≤ 1/2. The function g is bounded,
hence also f must be bounded too, thus f(x) = 1. Since

1/2 ≥ |(1−
√

1− 4δ)/2− 1| → 1 for δ → 0

we obtain a contradiction. Thus the equation in consideration is not stable
and, as a consequence of this, it is not normally uniformly b-stable.

2.4. The Dhombres equation
B. Batko proved in [4] for the Dhombres equation

(10) [f(x) + f(y)][f(x+ y)− f(x)− f(y)] = 0,

where f is a function from abelian group G to C, that if |[g(x)+g(y)][g(x+y)−
g(x)−g(y)]| ≤ δ for some δ > 0 and a function g : G→ C, then |g(x)| ≤

√
δ/2

or g is additive. Hence it is a solution of (10). Thus the equation (10) is
normally uniformly b-stable (Ψ(δ) =

√
δ/2) and it is normally stable (Φ(ε) =

2ε2).

2.5. The cosine d’Alembert equation
J.A. Baker proved in [3] for the cosine d’Alembert equation

(11) f(x+ y) + f(x− y) = 2f(x)f(y),

where f is a function from abelian group G to C, that if |g(x + y) + g(x −
y) − 2g(x)g(y)| ≤ δ for a δ > 0 and a function g : G → C, then |g(x)| ≤
(1 +

√
1 + 2δ)/2 or the function g is a solution of the equation (11). Thus

this equation is uniformly b-stable (Ψ(δ) = (1 +
√

1 + 2δ)/2). Infimum of the
range of the above function Ψ is not 0 and from here the question: is equation
(11) normally uniformly b-stable?
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2.6. In [18] it is proved that the equation

f2(2x) = 4f2(x),

where f : R → R, is normally stable by the measure of stability Φ(ε) = 3ε2,
thus it is normally uniformly b-stable with the function Ψ(δ) =

√
δ/3.

2.7. The squares of Cauchy and Jensen equations
In [18] are proved the following theorems.

Theorem. Let G be a semigroup divisible by 2 and let A be an algebra
with multiplicative norm. Then for every bounded solution g : G → A of the
inequality

(12)
∣∣[g(x+ y)]2˘[g(x) + g(y)]2

∣∣ ≤ δ,
where δ ≥ 0, we have

|g(x)| ≤
√
δ/3 for x ∈ G.

Since every unbounded solution of the inequality (12) is additive [18], the
equation

[f(x+ y)]2 = [f(x) + f(y)]2

is normally stable and normally uniformly b-stable.

Theorem. Let G be an abelian semigroup and A = R or A = C. If the
function [g(x+y)−g(x)]2−g2(y), for g : G→ A, is bounded, then g is bounded
or it is the solution of the equation

(13) [f(x+ y)− f(x)]2 = f2(y).

From here equation (13) is b-stable. Is this equation uniformly b-stable
(normally uniformly b-stable)?

We have the same situation for the equation

[f(x+ y)]2 = [f(x)f(y)]2,

where f : G → A, for G and A as above, and if the group G is divisible by 2
for the equation of Jensen[

f
(x+ y

2

)]2
=
[f(x) + f(y)

2

]2
.
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2.8. The Lobachevski’s equation
P. Gavruta proved in [9] that if

(14)
∣∣∣g2(x+ y

2

)
− g(x)g(y)

∣∣∣ ≤ δ
for x, y ∈ G and g : G→ C, where G is an abelian group uniquely divisible by
2, then

|g(x)| ≤
|g(0)|+

√
|g(0)|2 + 4δ

2
for x ∈ G

or g is a solution of Lobachevski’s equation, i.e.,

(15) g2
(x+ y

2

)
= g(x)g(y).

Thus this equation is b-stable and since |g(0)|+
√
|g(0)|2+4δ

2 depends on the
function g (by g(0)) thus we have the question: is the Lobachevski’s equation
uniformly b-stable (normally uniformly b-stable)?

The function ga(x) for a ≥ 0 such that ga(x) =
√
a2 + δ for x ∈ R \ {0}

and ga(0) = a is the solution of the inequality (14) and the family {ga(x)}a≥0
is not commonly bounded. This fact does not prove that equation (15) is not
uniformly b-bounded. Indeed, for every function ga there exists the solution
fa of (15), namely fa(x) = a+

√
a2+δ
2 , such that

|ga(x)− fa(x)| =
√
a2 + δ − a ≤

√
δ for every a ≥ 0.

2.9. The sine equation
We have the same situation for the sine equation

(16) f(x+ y)f(x− y) = f2(x)− f2(y).

P.W. Cholewa proved in [6] that for every function g from the abelian
group G uniquely divisible by 2 to C if

(17) |g(x+ y)g(x− y)− g2(x) + g2(y)| ≤ δ for x, y ∈ G and some δ > 0,

then g is bounded or it is the solution of (16). Thus equation (16) is b-stable.
Is this equation uniformly b-stable?

P.W. Cholewa has remarked that the functions gn(x) = n sinx+ 1
n for n ∈

N satisfy inequality (17) for δ = 3 and the family gn(x)n∈N is not commonly
bounded. This fact is not the proof that equation (16) is not uniformly b-stable
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since for every function gn there exists the solution fn, namely fn(x) = n sinx,
such that |gn(x)− fn(x)| = 1

n ≤ 1 for every n ∈ N.

2.10. The Pexider’s equation
We have as a corollary of a K. Nikodem’s result [20] the following theorem.

Theorem. Let G be an abelian semigroup with zero and B a Banach space.
If the functions f, g, h : G→ B are such that |f(x+ y)− g(x)− h(y)| ≤ δ for
every x, y ∈ G and some δ > 0, then there exist the functions f1, g1, h1 : G→
B such that f1(x + y) = g1(x) + h1(y) (the Pexider’s equation) and |f(x) −
f1(x)| ≤ 3δ, |g(x)− g1(x)| ≤ 4δ, |h(x)− h1(x)| ≤ 4δ for x ∈ G.

So the Pexider’s equation is normally uniformly b-stable with Ψ(δ) = 4δ,
thus normally stable too.

2.11. The quadratic equation
The quadratic equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

where f is the function from an abelian group to a Banach space, is normally
uniformly b-stable with Ψ(δ) = δ/2 ([6]), thus it is normally stable too.

2.12. The system of the functions

(18) f(f(x)) = f(x) and f ′(x) = 1,

for f : R → R, is not b-stable and it is restrictly b-stable and stable. Indeed,
for the function g(x) = 0 we have |g(g(x)) − g(x)| ≤ 1 and |g′(x) − 1| ≤ 1
and |g(x)− x| is not bounded. Assume that for a function g : R→ R we have
|g(g(x))−g(x)| ≤ δ and |g′(x)−1| ≤ δ for a positive δ < 1. For here 0 < 1−δ ≤
g′(x) ≤ 1 + δ, the function g is thus strictly increasing. We prove that this
function is unbounded from above and from below. Suppose, for the indirect
proof, that this function is bounded from above, thus the sequence g(n), as
increasing and bounded, is convergent. Since g(n+ 1)− g(n) → 0 thus there
exists a number n such that g(n+1)−g(n) < 1−δ. Since g(n+1)−g(n) = g′(ξ)
for a ξ ∈ (n, n + 1), thus g′(α) < 1 − δ and we obtain a contradiction. The
proof in the case if g is bounded from below is analogous. The function g is
thus unbounded from above and from below and continuous thus g(R) = R.
From here for every x ∈ R there exists a y ∈ R such that g(y) = x and we
have |g(x)−x| = |g(g(y))− g(y)| ≤ δ. Our system is thus restrictely b-stable.
It is stable too since for every ε > 0 the positive number δ < 1 is good for the
stability.

We prove that the maximal measure of stability does not exists for system
(18). For every measure of stability Φ of this system we have Φ(1) < 1. Indeed,
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if Φ(1) = a ≥ 1, then for every function g such that |g(g(x))− g(x)| ≤ a and
|g′(x)−1| ≤ a there exists a solution f of the system such that |g(x)−f(x)| ≤
1. This is impossible for the function g(x) = 0 since f(x) = x is the only
solution of the system. The function Φ1 such that Φ1(ε) = Φ(ε) for positive
ε 6= 1 and Φ1(1) = [Φ(1) + 1]/2 is the measure of stability of our system (see
the end of the previous section) and Φ(1) < Φ1(1).

System (18) is equivalent to the equation

(19) |f(f(x))− f(x)|+ |f ′(x)− 1| = 0.

Moreover, the stability and the b-stability for equation (19) is the same as for
the system (18) since the inequality

|f(f(x))− f(x)|+ |f ′(x)− 1| ≤ δ

implies

|f(f(x))− f(x)| ≤ δ and |f ′(x)− 1| ≤ δ

for every δ > 0.
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