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ON THE CONTINUOUS DEPENDENCE OF SOLUTIONS
TO ORTHOGONAL ADDITIVITY PROBLEM

ON GIVEN FUNCTIONS

Karol Baron

Abstract. We show that the solution to the orthogonal additivity problem
in real inner product spaces depends continuously on the given function and
provide an application of this fact.

Let E be a real inner product space of dimension at least 2.
A function f mapping E into an abelian group is called orthogonally ad-

ditive, if

f(x+ y) = f(x) + f(y) for all x, y ∈ E with x ⊥ y.

It is well known, see [3, Corollary 10] and [1, Theorem 1], that every orthog-
onally additive function f defined on E has the form

(1) f(x) = a(‖x‖2) + b(x) for x ∈ E,

where a and b are additive functions uniquely determined by f . Consequently,
given an abelian group G we have an operator Λ which to any orthogonally
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additive f : E → G assigns a pair (a, b) of additive functions such that (1)
holds, i.e.,

(2) Λf = (a, b)

where

(3) a : R→ G, b : E → G are additive and (1) holds.

Putting

Hom⊥(E,G) = {f : E → G | f is orthogonally additive}

and

Hom(S,G) = {f : S → G | f is additive}

for S ∈ {R, E} we see that Λ: Hom⊥(E,G)→ Hom(R, G)×Hom(E,G) given
by (2) and (3) is an additive bijection.

To consider its continuity assume that G is a topological group and given
a non-empty set S consider GS of all functions from S into G with the usual
addition and with the Tychonoff topology; clearly GS is a topological group.
In what follows we consider Hom⊥(E,G) and Hom(S,G) for S ∈ {R, E} with
the topology induced by GE and GS , respectively.

The main result of this note reads.

Theorem 1. Isomorphism Λ: Hom⊥(E,G) → Hom(R, G) × Hom(E,G)
given by (2) and (3) is a homeomorphism.

Proof. To show that Λ is continuous at zero fix neighbourhoods V ⊂
Hom(R, G) and W ⊂ Hom(E,G) of zeros. We may assume

V = {a ∈ Hom(R, G) : a(αn) ∈ U for n ∈ {1, . . . , N}}

and

W = {b ∈ Hom(E,G) : b(xn) ∈ U for n ∈ {1, . . . , N}}

with a neighbourhood U of zero in G and some α1, . . . , αN ∈ R, x1, . . . , xN ∈
E,N ∈ N. Choose a symmetric neighbourhood U0 of zero in G such that
U0 + U0 ⊂ U and xN+1, . . . , x2N ∈ E with

2‖xN+n‖2 = |αn| for n ∈ {1, . . . , N}
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and put

U =

N⋂
n=1

{f ∈ Hom⊥(E,G) : f(
1

2
xn) ∈ U0 and f(−1

2
xn) ∈ U0}

∩
2N⋂

n=N+1

{f ∈ Hom⊥(E,G) : f(xn) ∈ U0 and f(−xn) ∈ U0}.

Clearly U is a neighbourhood of zero in Hom⊥(E,G) and to show that Λ(U) ⊂
V ×W fix an f ∈ U . Then we have (2) and (3) and, by (3),

b(xn) = 2b(
1

2
xn) = f(

1

2
xn)− f(−1

2
xn) ∈ U0 + U0 ⊂ U

for n ∈ {1, . . . , N}, whence b ∈ W, and

a(αn) ∈ {a(|αn|),−a(|αn|)}

= {2a(‖xN+n‖2),−2a(‖xN+n‖2)}

= {f(xN+n) + f(−xN+n),−(f(xN+n) + f(−xN+n))}

⊂ U0 + U0 ⊂ U

for n ∈ {1, . . . , N}, whence a ∈ U .
To get continuity of Λ−1 it is enough to observe that the homomorphism

Λ1 : Hom(R, G)→ Hom⊥(E,G) given by

(Λ1a)(x) = a(‖x‖2) for x ∈ E

is continuous. �

Corollary 1. If G is Hausdorff and Hom(R, G) 6= {0}, then Hom(E,G)
is closed and nowhere dense in Hom⊥(E,G).

For the proof the following lemma will be used.

Lemma 1. If Hom(R, G) 6= {0}, then Hom(R, G) is not discrete.

Proof. Fix arbitrarily a positive integer N , reals α1, . . . , αN and a neigh-
bourhood U of zero in G. To show that the set

(4) {a ∈ Hom(R, G) : a(αn) ∈ U for n ∈ {1, . . . , N}}
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is different from {0} let H be a Hamel basis of R (i.e., a basis of the vector
space R over the field Q of rationals) and let H0 be a finite subset of H such
that

αn ∈ LinQH0 for n ∈ {1, . . . , N}.

Since (see [2, Theorem 4.2.3]) cardH = c, there exists a function c0 : H → R
such that

c0(H0) = {0} and c0(H \H0) = H.

Let c : R→ R be the additive extension of c0 and consider an a ∈ Hom(R, G)\
{0}. Clearly a ◦ c is additive and

a ◦ c(αn) ∈ a(c(LinQH0) = a(LinQc0(H0)) = a({0}) = {0}

for n ∈ {1, . . . , N} which proves that a ◦ c belongs to set (4). To see that
a ◦ c 6= 0 consider a β ∈ R with a(β) 6= 0. Then

β ∈ LinQH = LinQc(H \H0) ⊂ c(LinQH) = c(R)

whence β = c(α) for some α ∈ R and a ◦ c(α) = a(β) 6= 0. �

Proof of Corollary 1. By the standard argument the set Hom(E,G)
is closed in GE . Since

Hom(E,G) = Λ−1({0} ×Hom(E,G))

and Λ is a homeomorphism, it is enough to observe that according to Lemma 1
the set {0} × Hom(E,G) is nowhere dense in Hom(R,G) × Hom(E,G). �

We finish with some remarks.

Remarks.
1. Since projections are open, if Hom(R,G) is discrete, then so is also G. The

converse is not true as the next remark shows.
2. IfG is uniquely divisible andG 6={0}, then Hom(R,G) 6= {0} and, by Lemma

1, Hom(R,G) is not discrete.
3. Hom(R,Z) = {0}.
4. The following three sentences are equivalent:

Hom(R, G) = {0}, Hom(E,G) = {0}, Hom⊥(E,G) = {0}.
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The reader interested in further problems connected with orthogonal ad-
ditivity is referred to the survey paper [4] by Justyna Sikorska.
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