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Let I ⊆ R be a nonvoid interval throughout this talk.
For a given two-variable mean M : I2

≤ := {(x , y) ∈ I2 | x ≤ y} → R,
we consider the class of functions f : I → R satisfying the inequality

f (M(x , y)) ≤ y −M(x , y)

y − x
f (x) +

M(x , y)− x
y − x

f (y) x , y ∈ I, x < y .

Such functions will be called M-convex.

In the particular case when M is of the form

M(x , y) = At (x , y) := tx + (1− t)y x , y ∈ R

for some t ∈ ]0,1[ , then the notion of M-convexity reduces to

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) x , y ∈ I, x < y ,

which could be called asymmetric t-convexity. We speak about
(symmetric) t-convexity if

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) x , y ∈ I.

Zs. Páles (University of Debrecen) Results and problems related to convexity Ger–Kominek 70 Workshop 2 / 17



Let I ⊆ R be a nonvoid interval throughout this talk.
For a given two-variable mean M : I2

≤ := {(x , y) ∈ I2 | x ≤ y} → R,
we consider the class of functions f : I → R satisfying the inequality

f (M(x , y)) ≤ y −M(x , y)

y − x
f (x) +

M(x , y)− x
y − x

f (y) x , y ∈ I, x < y .

Such functions will be called M-convex.

In the particular case when M is of the form

M(x , y) = At (x , y) := tx + (1− t)y x , y ∈ R

for some t ∈ ]0,1[ , then the notion of M-convexity reduces to

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) x , y ∈ I, x < y ,

which could be called asymmetric t-convexity. We speak about
(symmetric) t-convexity if

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) x , y ∈ I.

Zs. Páles (University of Debrecen) Results and problems related to convexity Ger–Kominek 70 Workshop 2 / 17



Among the many implications related to (symmetric) t-convexity
properties we mention the following ones:

1 If f is Jensen convex then it is Q-convex, i.e., t-convex for all
t ∈ [0,1] ∩Q (Kuczma [6]);

2 If f is t-convex for some t ∈ ]0,1[ , then it is Jensen convex
(Daróczy–Páles [1]);

3 If f is t-convex for some t ∈ ]0,1[ , then, by a result of Kuhn [7],
there exists a subfield K of R such that

{s ∈ ]0,1[ | f is s-convex} = ]0,1[∩K .

4 Conversely, if K is a subfield of R, then there exists a function
f : I → R such that the above equality holds (Ger [2]).

For generalizations in terms of (a,b)-convex functions, see the paper
by Kominek [5]. For more general results in terms of higher-order
convexity notions refer to the paper by Gilányi and Páles [3].
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In 2014, for every transcendental number t ∈ ]0,1[ , Lewicki and Olbryś
[8] constructed a function f : I → R such that{

f (tx + (1− t)y) < tf (x) + (1− t)f (y)

f ((1− t)x + ty) > (1− t)f (x) + tf (y)
(x , y ∈ I, x < y).

Hint: Let f = d , where d : R→ R is an algebraic derivation which is
positive at t . Then, for all x , y ∈ R,

tf (x) + (1− t)f (y)− f (tx + (1− t)y)

= td(x) + (1− t)d(y)− d(tx + (1− t)y) = d(t)(y − x).

Therefore, for a transcendental t ∈ ]0,1[ , the notions of asymmetric
and symmetric t-convexity properties are different from each other.

It is unknown if these two properties are equivalent to each other for
rational, or more generally, for algebraic t ∈ ]0,1[ .

The particular case t = 1
3 also has not been clarified yet.
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An old method
If you cannot solve a problem then generalize it!
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Descendants of n-tuples of means (Kiss–Páles [4])
Given an n ≥ 2 member sequence of two-variable means
M1, . . . ,Mn : I2

≤ → R, the i th element of an increasing sequence
N1, . . . ,Nn : I2

≤ → R of two-variable means such that, for all (x , y) ∈ I2
≤,

N1(x , y) = M1(x ,N2(x , y)),

Ni(x , y) = Mi(Ni−1(x , y),Ni+1(x , y)) (i ∈ {2, . . . ,n − 1}),
Nn(x , y) = Mn(Nn−1(x , y), y)

hold, is called the i th descendant of the n-tuple (M1, . . . ,Mn).

Observe that the above system of equations states that, for (x , y) ∈ I2
≤,

the vector (N1(x , y), . . . ,Nn(x , y)) ∈ [x , y ]n≤ is a fixed point of the
mapping ϕ(x ,y) : [x , y ]n≤ → Rn defined by

ϕ(x ,y)(t1, . . . , tn) :=
(
M1(x , t2), . . . ,Mi(ti−1, ti+1), . . . ,Mn(tn−1, y)

)
.

Zs. Páles (University of Debrecen) Results and problems related to convexity Ger–Kominek 70 Workshop 6 / 17



Descendants of n-tuples of means (Kiss–Páles [4])
Given an n ≥ 2 member sequence of two-variable means
M1, . . . ,Mn : I2

≤ → R, the i th element of an increasing sequence
N1, . . . ,Nn : I2

≤ → R of two-variable means such that, for all (x , y) ∈ I2
≤,

N1(x , y) = M1(x ,N2(x , y)),

Ni(x , y) = Mi(Ni−1(x , y),Ni+1(x , y)) (i ∈ {2, . . . ,n − 1}),
Nn(x , y) = Mn(Nn−1(x , y), y)

hold, is called the i th descendant of the n-tuple (M1, . . . ,Mn).

Observe that the above system of equations states that, for (x , y) ∈ I2
≤,

the vector (N1(x , y), . . . ,Nn(x , y)) ∈ [x , y ]n≤ is a fixed point of the
mapping ϕ(x ,y) : [x , y ]n≤ → Rn defined by

ϕ(x ,y)(t1, . . . , tn) :=
(
M1(x , t2), . . . ,Mi(ti−1, ti+1), . . . ,Mn(tn−1, y)

)
.

Zs. Páles (University of Debrecen) Results and problems related to convexity Ger–Kominek 70 Workshop 6 / 17



The existence of the descendants is proved by using the following fixed
point theorem which is a useful consequence of the so-called
Halper–Bergman Fixed Point Theorem:

Theorem ([4])
Let c1, . . . , cm ∈ Rn and γ1, . . . , γm ∈ R and assume that the
polyhedron K ⊆ Rn defined by

K :=
{

x ∈ Rn | 〈ck , x〉 ≤ γk , k ∈ {1, . . . ,m}
}

is bounded. Let f : K → Rn be a continuous function with the following
property

〈ck , f (x)〉 ≤ γk for all x ∈ K and for all k ∈ {1, . . . ,m}
such that 〈ck , x〉 = γk .

Then the set of fixed points of f is a nonempty compact subset of K .
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Corollary ([4])
Given an n ≥ 2, for any sequence of continuous two-variable means
M1, . . . ,Mn : I2

≤ → R, there exits an increasing sequence
N1, . . . ,Nn : I2

≤ → R of two-variable means such that, for all (x , y) ∈ I2
≤,

N1(x , y) = M1(x ,N2(x , y)),

Ni(x , y) = Mi(Ni−1(x , y),Ni+1(x , y)) (i ∈ {2, . . . ,n − 1}),
Nn(x , y) = Mn(Nn−1(x , y), y).

Proof
For x < y in I let K := [x , y ]n≤ and apply the fixed point theorem to the
mapping ϕ(x ,y) : [x , y ]n≤ → Rn defined by

ϕ(x ,y)(t1, . . . , tn) :=
(
M1(x , t2), . . . ,Mi(ti−1, ti+1), . . . ,Mn(tn−1, y)

)
.
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Theorem ([4])

Let n ≥ 2, M1, . . . ,Mn : I2
≤ → R be a sequence of continuous

two-variable strict means, and let N1, . . . ,Nn : I2
≤ → R be a strictly

increasing sequence of the descendants of (M1, . . . ,Mn).
Assume that f : I → R is convex with respect to each of the means
M1, . . . ,Mn. Then f is also convex with respect to each of the means
N1, . . . ,Nn

The proof of this theorem is based on the following inequality related to
second-order divided differences.

Lemma (Chain inequality, Nikodem–Páles [10])
Let f : H → R, n ≥ 2 and x0 < x1 < · · · < xn < xn+1 be elements of H.
Then, for all k ∈ {1, . . . ,n}, we have

min
1≤i≤n

[xi−1, xi , xi+1; f ] ≤ [x0, xk , xn+1; f ] ≤ max
1≤i≤n

[xi−1, xi , xi+1; f ].
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Proof of the Theorem
Let (x , y) ∈ I2

< and define

x0 := x , x1 := N1(x , y), . . . , xn := Nn(x , y), xn+1 := y .

Then, x0 < x1 < · · · < xn < xn+1 and, for i ∈ {1, . . . ,n}, we have that

xi = Mi(xi−1, xi+1).

Thus, by the Mi -convexity of f ,

[xi−1, xi , xi+1; f ] = [xi−1,Mi(xi−1, xi+1), xi+1; f ] ≥ 0.

Using the Chain Inequality, for all k ∈ {1, . . . ,n}, it follows that

[x0, xk , xn; f ] ≥ 0,

i.e.,
[x ,Nk (x , y), y ; f ] ≥ 0.
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Remark
In general, the descendants of some given means are not uniquely
determined. For instance, let n ≥ 2, and let M1 := max, Mn := min and
Mi := A 1

2
for i ∈ {2, . . . ,n − 1} over the interval R. Then, for

(x , y) ∈ R2
<, the fixed point equation (t1, . . . , tn) = ϕ(x ,y)(t1, . . . , tn) is

equivalent to

(t1, . . . , tn) =
(

t2,
t1 + t3

2
, . . . ,

tn−2 + tn
2

, tn−1

)
.

An easy computation shows that this equality is satisfied if and only if
t1 = · · · = tn. Therefore, the fixed point set of this map is given by
{(t1, . . . , tn) | t1 = · · · = tn ∈ [x , y ]} =diag[x , y ]n.

Remark
In general, the descendants of some given means cannot easily be
computed. A class of means, where there is some hope for explicit
formulae is the class of generalized quasi-arithmetic means.
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The class of Matkowski means (Matkowski [9])
We say that a function M : I × I → R is a generalized weighted
quasi-arithmetic mean or a Matkowski mean if there exist continuous,
strictly increasing functions f ,g : I → R, such that, for all x , y ∈ I, we
have

M(x , y) = (f + g)−1(f (x) + g(y)) =: Mf , g(x , y).

If h : I → R is a continuous, strictly increasing function and t ∈ ]0,1[ ,
then Mth, (1−t)h is a weighted quasi-arithmetic mean.

Zs. Páles (University of Debrecen) Results and problems related to convexity Ger–Kominek 70 Workshop 12 / 17



The class of Matkowski means (Matkowski [9])
We say that a function M : I × I → R is a generalized weighted
quasi-arithmetic mean or a Matkowski mean if there exist continuous,
strictly increasing functions f ,g : I → R, such that, for all x , y ∈ I, we
have

M(x , y) = (f + g)−1(f (x) + g(y)) =: Mf , g(x , y).

If h : I → R is a continuous, strictly increasing function and t ∈ ]0,1[ ,
then Mth, (1−t)h is a weighted quasi-arithmetic mean.

Zs. Páles (University of Debrecen) Results and problems related to convexity Ger–Kominek 70 Workshop 12 / 17



Descendants of a chain of Matkowski means ([4])
Let n ≥ 2 and f1, . . . , fn,g1, . . . ,gn : I → R be continuous, strictly
increasing functions. For (x , y) ∈ I2

<, define ϕ(x ,y) : [x , y ]n≤ → Rn by

ϕ(x ,y)(t1, . . . , tn) :=
(
Mf1, g1(x , t2), . . . ,Mfi , gi(ti−1, ti+1), . . . ,Mfn, gn(tn−1, y)

)
.

Then, for (x , y) ∈ I2
<, the fixed point set Φ(x ,y) of the mapping ϕ(x ,y) is

nonempty and compact. Furthermore, Φ(x ,y) is a singleton if

ai := Lip
[
fi ◦ (fi−1 + gi−1)−1] < +∞ (i ∈ {2, . . . ,n}),

bi := Lip
[
gi ◦ (fi+1 + gi+1)−1] < +∞ (i ∈ {1, . . . ,n − 1}),

and if the constants w1, . . . ,wn−1 defined by w−1 := w0 := 1 and

wi := wi−1 − ai+1biwi−2 (i ∈ {1, . . . ,n − 1}).

are positive.
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Descendants of a chain of Matkowski means ([4])
Let n ≥ 2, p,q,h1, . . . ,hn−1 : I → R be continuous, strictly increasing
functions. Set further h0 := hn := 0, and assume that, for some
j ∈ {1, . . . ,n}, the sequence of means M1, . . . ,Mn : I2

≤ → I is defined by

Mi(x , y) =


Mp+hi−1, hi (x , y)) if i ∈ {1, . . . , j − 1},

Mp+hj−1, q+hj (x , y) if i = j ,

Mhi−1, q+hi (x , y), y) if i ∈ {j + 1, . . . ,n}.

Then, for all i ∈ {1, . . . ,n}, the i th descendant Ni of (M1, . . . ,Mn) is
given by

Ni(x , y) =


Mp, hi (x ,Ni+1(x , y)) if i ∈ {1, . . . , j − 1},

Mp, q(x , y) if i = j ,

Mhi−1, q(Ni−1(x , y), y) if i ∈ {j + 1, . . . ,n}.

Zs. Páles (University of Debrecen) Results and problems related to convexity Ger–Kominek 70 Workshop 14 / 17



Descendants of a chain of Matkowski means ([4])
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Descendants of a chain of weighted quasi-arithmetic means ([4])
Let n ≥ 2, t1, . . . , tn ∈ ]0,1[, and let h : I → R be a continuous, strictly
increasing function. Let (M1, . . . ,Mn) : I2

≤ → R be defined by

Mi(x , y) = Mti h, (1−ti )h(x , y), i ∈ {1, . . . ,n}, (x , y) ∈ I2
≤

Then, for all i ∈ {1, . . . ,n}, the i th descendant Ni of (M1, . . . ,Mn) is
given by Ni(x , y) = Msi h, (1−si )h(x , y), where

si :=

( n∑
j=i

j∏
k=1

tk
1− tk

)( n∑
j=0

j∏
k=1

tk
1− tk

)−1

.

For example, if n = 2, then (after some simplifications),

s1 =
t1

1− t1 + t1t2
, s2 =

t1t2
1− t1 + t1t2

.
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For a real valued function f : I → R consider the set Cf defined by

Cf := {t ∈ ]0,1[ | for all (x , y) ∈ I2
≤,

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y)}.

Theorem (about assymmetric t-convexity) ([4])
Given a function f : I → R, the following statements hold:

1 if t , s1, s2 ∈ Cf with s1 < s2, then ts2 + (1− t)s1 ∈ Cf ;

2 if t , s ∈ Cf , then ts and 1− (1− t)(1− s) belong to Cf ;

3 if n ≥ 2 and t1, . . . , tn ∈ Cf , then s1, . . . , sn ∈ Cf , where

si :=

( n∑
j=i

j∏
k=1

tk
1− tk

)( n∑
j=0

j∏
k=1

tk
1− tk

)−1

;

4 Cf is dense in the open unit interval, provided that it is not empty.
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Corollary
For a function f : I → R the following statements hold:

1 if
1
2
∈ Cf then r ∈ Cf for all r ∈ Q∩ ]0,1[ ,

2 if
`

m
∈ Cf for some `,m ∈ N with ` < m and ` 6= m

2
, then, for all

n ≥ 2 and for all i ∈ {1, . . . ,n}, the fraction

ri :=
`n+1 − `i(m − `)n+1−i

`n+1 − (m − `)n+1

belongs to Cf .

Open problem
Find a complete characterization of the set Cf .
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On non-symmetric t-convex functions.
Math. Inequal. Appl., 17(1):95–100, 2014.

J. Matkowski.
Generalized weighted and quasi-arithmetic means.
Aequationes Math., 79(3):203–212, 2010.

K. Nikodem and Zs. Páles.
On t-convex functions.
Real Anal. Exchange, 29(1):219–228, 2003.

Zs. Páles (University of Debrecen) Results and problems related to convexity Ger–Kominek 70 Workshop 17 / 17


