Theorems of H. Steinhaus, S. Picard and J. Smital

Theorems of H. Steinhaus, S. Picard and J. Smital

イロン イヨン イヨン イヨン

Э

H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 99–104.

Theorem

If $A, B \subset \mathbb{R}$ are sets of positive Lebesgue measure, then $A + B = \{a + b : a \in A \land b \in B\}$ and A - B contains an interval.

Theorems of H. Steinhaus, S. Picard and J. Smital

H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 99–104.

Theorem

If $A, B \subset \mathbb{R}$ are sets of positive Lebesgue measure, then $A + B = \{a + b : a \in A \land b \in B\}$ and A - B contains an interval.

S. Picard, Sur les ensembles parfaits, Paris 1942.

Theorem

If $A \subset \mathbb{R}$ has the Baire property ($A = (G \setminus P_1) \cup P_2$, where G is open, P_1, P_2 are of the first category) and is of the second category, then A + A contains an interval.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 99–104.

Theorem

If $A, B \subset \mathbb{R}$ are sets of positive Lebesgue measure, then $A + B = \{a + b : a \in A \land b \in B\}$ and A - B contains an interval.

S. Picard, Sur les ensembles parfaits, Paris 1942.

Theorem

If $A \subset \mathbb{R}$ has the Baire property ($A = (G \setminus P_1) \cup P_2$, where G is open, P_1, P_2 are of the first category) and is of the second category, then A + A contains an interval.

M. Kuczma, J. Smital, On measures connected with the Cauchy equation, Aequationes Math. 14 (1976), 421–428.

Theorem

If $E \subset \mathbb{R}$ has a positive outer measure and $D \subset \mathbb{R}$ is a dense set in \mathbb{R} , then the inner Lebesgue measure of the set $\mathbb{R} \setminus (E + D)$ is equal to zero.

Theorem

If X is a topological vector space and $S \subset X$ is a second category set having the Baire property, then S + S contains a nonempty open set.

Theorem

If X is a topological vector space and $S \subset X$ is a second category set having the Baire property, then S + S contains a nonempty open set.

We say that $S \subset X$ is of the first category at a point $s \in X$ if there exists a neighbourhood G of s such that $G \cap S$ is of the first category. D(S) is the set of all points of the space X at which S is not of the first category.

Theorem

If X is a topological vector space and $S \subset X$ is a second category set having the Baire property, then S + S contains a nonempty open set.

We say that $S \subset X$ is of the first category at a point $s \in X$ if there exists a neighbourhood G of s such that $G \cap S$ is of the first category. D(S) is the set of all points of the space X at which S is not of the first category.

K. Kuratowski (Topologie): $S \subset X$ is of the first category if and only if $D(S) = \emptyset$; D(S) is closed; $D(S_1 \cup S_2) = D(S_1) \cup D(S_2)$; $D(S) \subset Cl(S)$; if $S_1 \subset S_2$ then $D(S_1) \subset D(S_2)$; D(S) = Cl(Int(D(S)).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Theorem

If X is a topological vector space and $S \subset X$ is a second category set having the Baire property, then S + S contains a nonempty open set.

We say that $S \subset X$ is of the first category at a point $s \in X$ if there exists a neighbourhood G of s such that $G \cap S$ is of the first category. D(S) is the set of all points of the space X at which S is not of the first category.

K. Kuratowski (Topologie): $S \subset X$ is of the first category if and only if $D(S) = \emptyset$; D(S) is closed; $D(S_1 \cup S_2) = D(S_1) \cup D(S_2)$; $D(S) \subset Cl(S)$; if $S_1 \subset S_2$ then $D(S_1) \subset D(S_2)$; D(S) = Cl(Int(D(S))).

Z. Kominek: If $S \subset X$ is of second category and has the Baire property, then $D(S) \cap (D(S'))'$ contains a non-empty open set.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Z. Kominek, Some generalization of the theorem of S. Picard, Prace Naukowe Uniwersytetu Śląskiego w Katowicach Nr 37, Prace Matematyczne IV, 1973, 31–33.

Theorem

Let $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function such that h is a homeomorphism with respect to each variable separately. If $A, B \subset \mathbb{R}$ are second category Baire sets, then the set $h(A \times B)$ contains an interval.

Z. Kominek, Some generalization of the theorem of S. Picard, Prace Naukowe Uniwersytetu Śląskiego w Katowicach Nr 37, Prace Matematyczne IV, 1973, 31–33.

Theorem

Let $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function such that h is a homeomorphism with respect to each variable separately. If $A, B \subset \mathbb{R}$ are second category Baire sets, then the set $h(A \times B)$ contains an interval.

M. E. Kuczma, M. Kuczma, An elementary proof and an extension of a theorem of Steinhaus, Glasnik Mat. 6 (26) (1971), 11–18.

Theorem

If $A, B \subset \mathbb{R}$ have positive inner Lebesgue measure and $f : D \to \mathbb{R}$, $D \subset \mathbb{R}^2$ is a region such that $A \times B \subset D$, $f \in C^1$, $f'_x \neq 0$, $f'_y \neq 0$ in D, then $f(A \times B)$ contains an interval.

Z. Kominek, Measure, category, and the sums of sets, The Amer. Math. Monthly, Vol. 90, No 8 (Oct. 1983), 561–562.

Theorem

There exist disjoint sets $A, B \subset \mathbb{R}$ such that $A \cup B = \mathbb{R}$, A is a second category Baire set, B has infinite Lebesgue measure and A + B does not contain any nonempty open interval.

Z. Kominek, Measure, category, and the sums of sets, The Amer. Math. Monthly, Vol. 90, No 8 (Oct. 1983), 561–562.

Theorem

There exist disjoint sets $A, B \subset \mathbb{R}$ such that $A \cup B = \mathbb{R}$, A is a second category Baire set, B has infinite Lebesgue measure and A + B does not contain any nonempty open interval.

Let *C* be a perfect nowhere dense set with positive Lebesgue measure. Put $B = (Q - C) \cup (Q + C)$ and $A = \mathbb{R} \setminus B$. Then $Q - B \subset B$ and all conditions are fulfilled, because $(A + B) \cap Q = \emptyset$.

Z. Kominek, On a decomposition of the space of real numbers, Glasnik Matematički, Vol. 19 (1984), 231–233.

Theorem

If $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is such that $f(x, \cdot)$ and $f(\cdot, y)$ are homeomorphisms (for each y and x), then for each first category set $A_0 \subset \mathbb{R}$ with positive Lebesgue measure there exist $C, D \subset \mathbb{R}$ such that

- 1. $C \cap D = \emptyset$, $C \cup D = \mathbb{R}$
- 2. $A_0 \subset C$
- 3. C is of the first category (and positive measure)
- 4. Int $f(C, D) = \emptyset$.

Lemma

Let X be a set and $g_n : T_n \to X$, $T_n \subset X$, n = 1, 2, ... be arbitrary functions. For an arbitrary set $A_0 \subset X$ there exists a set $A \subset X$ containing A_0 such that $\bigcup_{n=1}^{\infty} g_n(A) \subset A$.

Proof. Put A = X. Original proof: If $A_k = \bigcup_{n=1}^{\infty} g_n(A_{k-1})$, k = 1, 2, ..., then $A = \bigcup_{k=0}^{\infty} A_k$ satisfies the assumptions $\left(A = \bigcup_{k=1}^{\infty} A_k\right)$

Theorems of H. Steinhaus, S. Picard and J. Smital

周 と くき とくき と

Z. Kominek, H. J. Miller, Some remarks on a theorem of Steinhaus, Glasnik Matematički, Vol. 20 (1985), 337–344.

Theorem

If $A, B \subset \mathbb{R}^n$, with A a Lebesgue measurable set having positive Lebesgue measure and B a set having positive outer Lebesgue measure, then A + B contains an n-dimensional ball.

Z. Kominek, H. J. Miller, Some remarks on a theorem of Steinhaus, Glasnik Matematički, Vol. 20 (1985), 337–344.

Theorem

If $A, B \subset \mathbb{R}^n$, with A a Lebesgue measurable set having positive Lebesgue measure and B a set having positive outer Lebesgue measure, then A + B contains an n-dimensional ball.

Remark

If both sets A, B have positive outer Lebesgue measure, then it can happen that $Int(A + B) = \emptyset$. Let H be a Hamel basis for \mathbb{R} , T - the subspace spanned by $H \setminus \{h_0\}, h_0 \in H$. If $A = T \cap (0, 1)$, then $m_e(A) > 0$ and $Int(A + A) = \emptyset$.

W. Sander, Verallgemeinerungen eines Satzes von S. Picard, Mannuscripta Math. 16 (1975), 11–25.

Theorem

If $A, B \subset \mathbb{R}^n$, A is a second category Baire set and B is a second category set, then A + B contains an n-dimensional ball.

Z. Kominek, H. I. Miller, Some remarks on a theorem of Steinhaus, Glasnik Matematički, Vol. 20 (1985), 337–344.

Theorem

Suppose $A, B \subset \mathbb{R}$ and that A is measurable and m(A) > 0, $m_e(B) > 0$. Suppose further that H is an open set containing $A \times B$ and that f is a real valued function defined on H. If $a \in A$ is a density point of $A, b \in B$ is an outer density point of B and the partial derivatives f'_x and f'_y of f are continuous in some neighbourhood of (a, b) and $f'_x(a, b) \neq 0$ and $f'_y(a, b) \neq 0$, then f(a, b) contains an interval.

- 사례가 사용가 사용가 구용

Z. Kominek, H. I. Miller, Some remarks on a theorem of Steinhaus, Glasnik Matematički, Vol. 20 (1985), 337–344.

Theorem

Suppose $A, B \subset \mathbb{R}$ and that A is measurable and m(A) > 0, $m_e(B) > 0$. Suppose further that H is an open set containing $A \times B$ and that f is a real valued function defined on H. If $a \in A$ is a density point of $A, b \in B$ is an outer density point of B and the partial derivatives f'_x and f'_y of f are continuous in some neighbourhood of (a, b) and $f'_x(a, b) \neq 0$ and $f'_y(a, b) \neq 0$, then f(a, b) contains an interval.

Theorem

let I_1 , I_2 be open intervals and let $H = I_1 \times I_2$. Let f be a real valued function defined on H such that the functions $\{f^x\}_{x \in I_1}$, $\{f^y\}_{x \in I_2}$ are homeomorphisms of I_2 (respectively I_1) onto their ranges, where $f^x : I_2 \to \mathbb{R}$ with $f^x(y) = f(x, y)$ and $f^y : I_1 \to \mathbb{R}$ with $f^y(x) = f(x, y)$. If $A \subset \mathbb{R}$ is a second category Baire set and $B \subset \mathbb{R}$ is a second category set and $A \times B \subset H$ then $f(A \times B)$ contains an interval.

R. Ger, Z. Kominek, M. Sablik, Generalized Smital's Lemma and a Theorem of Steinhaus, Radovi Matematički, Vol. 1 (1985), 101–119.

Motivation: Smital's Lemma implies:

- 1. Steinhaus theorem,
- 2. Frechet-Sierpiski Theorem: each measurable function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x_1 + x_2) = f(x_1) + f(x_2)$ is of the form $f(x) = f(1) \cdot x$,
- 3. each measurable and microperiodic function from $\mathbb R$ to $\mathbb R$ is constant almost everywhere
- 4. each nonmeasurable subspace of the linear space $\mathbb R$ over $\mathbb Q$ is saturated nonmeasurable.

If (X, ρ) is a separable metric space and $m^* : 2^X \to [0, \infty]$ is a metric outer measure, m^* is said to satisfy 5r-condition provided for every bounded set $E \subset X$ there exist two positive constants c(E) and C(E) such that

$$m^*(\bar{K}(x,5r)) < C(E) \cdot m^*(\bar{K}(x,r))$$

for all $x \in E$ and all $r \in (0, c(E))$.

R. Ger, Z. Kominek, M. Sablik, Generalized Smital's Lemma and a Theorem of Steinhaus, Radovi Matematički, Vol. 1(1985), 101–119 (a continuation).

Theorem

Let (X, ρ) be a separable metric space with an ordinary metric ρ and let $m^* : 2^X \to [0, \infty]$ be a metric outer measure satisfying the 5*r*-condition. Suppose that we are given two sets $E, D \subset X$, a point $x_0 \in E$ and a map $f : E \times X \to X$ such that

1.
$$f({x_0} \times D)$$
 is dense in X;
2. $\lim_{r \to \infty} \frac{m^*(f(E \times {y}) \cap \bar{K}(f(x_0,y),r))}{m^*(\bar{K}(f(x_0,y),r))} = 1$
uniformly with respect to $y \in D$. Then, for any open ball $K(z,\eta) \subset X$, we have

$$m^*(K(z,\eta)\cap f(E imes D))=m^*(K(z,\eta));$$

in other words:

$$m^*(X \setminus f(E \times D)) = 0.$$

Theorems of H. Steinhaus, S. Picard and J. Smital

- 사례가 사용가 사용가 구용

Remark

For $X = \mathbb{R}$, m^* - an outer Lebesgue measure and f(x, y) = x + y we obtain Smital's Lemma.

Theorem

Let X, Y and Z be Baire spaces. Assume that a set $E \subset X$ is of second category at each of its points and $D \subset Y$ is dense in Y. Let $h: X \times Y \to Z$ be such that the partial maps $h(x, \cdot)$ and $h(\cdot, y)$ are homeomorphisms of Y and X onto Z, respectively, for all $x \in X$ and $y \in D$. Then the set $Z \setminus h(E \times D)$ contains no second category set having the Baire property.

Z. Kominek, On an equivalent form of a Steinhaus's Theorem, Mathematica, Tome 30(53), No 1, 1988 25–27. Consider conditions:

- (X, +) is a separable Baire topological group (not necessarily commutative);
- (2) *m* is a measure defined on some σ -algebra \mathfrak{M} of subsets of *X* such that

$$\forall_{A\in\mathfrak{M}} \left[m(A) > 0 \Rightarrow \exists_{F \subset A}(m(F) > 0 \text{ and } F \text{ is a compact set.} \right]$$

Theorems of H. Steinhaus, S. Picard and J. Smital

Theorem Let assumptions (1) and (2) be fulfilled. Condition (3) implies the condition (4)

(ロ) (同) (E) (E) (E)

Theorem

```
Let assumptions (1) and (2) be fulfilled. Condition (3) implies the condition (4)
```

Theorem

Let assumptions (1) and (2) be fulfilled. If every compact subset belongs to the σ -algebra \mathfrak{M} , then (4) implies (3).

Remark Measurability is important.

- 4 同 6 4 日 6 4 日 6

Z. Kominek, W. Wilczyński, On sets for which the difference set is the whole space, Rocznik Naukowo-Dydaktyczny WSP w Krakowie, Zeszyt 207, Prace Matematyczne XVI, 1999, 45–51.

Theorem

Let $A \subset \mathbb{R}^p$ be a Lebesgue measurable set. If

$$\limsup_{r\to\infty}\frac{m_p(A\cap K_p(0,r))}{m_p(K_p(0,r))}=\lambda>\frac{1}{2},$$

then $A - A = \mathbb{R}^p$.

S. Solecki, Amenability, free subgroups and Haar null sets in locally compact groups, Proc. London Math. Soc. 93(3), 2006, 693–722.

N. H. Bingham, A. J. Ostaszewski, The Steinhaus theorem and regular variation: de Bruijn and after, Indagationes Mathematicae 24 (2013), 679–692.

More friendly:

W. Wilczyński, A. Kharazishvili, On the translations of measurable sets and sets with the Baire property, Bull. of the Acad. of Sciences of Georgia 145(1) (1992), 43–46 (in Russian, English and Georgian summary).

Theorem

If $A \subset \mathbb{R}$ is a measurable set, then for each sequence $\{x_n\}_{n \in \mathbb{N}}$ convergent to 0 the sequence of characteristic functions $\{\chi_{A+x_n}\}_{n \in \mathbb{N}}$ converges in measure to χ_A .

Remark

There exists a measurable set $A \subset \mathbb{R}$ and a sequence $\{x_n\}_{n \in \mathbb{N}}$ convergent to 0 such that $\{\chi_{A+x_n}\}_{n \in \mathbb{N}}$ does nor converge almost everywhere to χ_A .

Theorem

If A has the Baire property, then $\{\chi_{A+x_n}\}_{n\in\mathbb{N}}$ converges to χ_A except on a set of the first category.

イロト 不得 とくき とくき とうき