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H. Steinhaus, Sur les distances des points des ensembles de
mesure positive, Fund. Math. 1 (1920), 99–104.

Theorem
If A,B ⊂ R are sets of positive Lebesgue measure, then
A + B = {a + b : a ∈ A ∧ b ∈ B} and A− B contains an interval.

S. Picard, Sur les ensembles parfaits, Paris 1942.

Theorem
If A ⊂ R has the Baire property (A = (G \ P1) ∪ P2, where G is
open, P1,P2 are of the first category) and is of the second
category, then A + A contains an interval.

M. Kuczma, J. Smital, On measures connected with the Cauchy
equation, Aequationes Math. 14 (1976), 421–428.

Theorem
If E ⊂ R has a positive outer measure and D ⊂ R is a dense set in
R, then the inner Lebesgue measure of the set R \ (E + D) is
equal to zero.
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Z. Kominek, On the sum and difference of two sets in topological
vector spaces, Fund. Math. LXXI (1971), 165–169.

Theorem
If X is a topological vector space and S ⊂ X is a second category
set having the Baire property, then S + S contains a nonempty
open set.

We say that S ⊂ X is of the first category at a point s ∈ X if there
exists a neighbourhood G of s such that G ∩ S is of the first
category. D(S) is the set of all points of the space X at which S is
not of the first category.

K. Kuratowski (Topologie): S ⊂ X is of the first category if and
only if D(S) = ∅; D(S) is closed; D(S1 ∪ S2) = D(S1) ∪ D(S2);
D(S) ⊂ Cl(S); if S1 ⊂ S2 then D(S1) ⊂ D(S2);
D(S) = Cl(Int(D(S)).

Z. Kominek: If S ⊂ X is of second category and has the Baire
property, then D(S) ∩ (D(S ′))′ contains a non-empty open set.
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Z. Kominek, Some generalization of the theorem of S. Picard,
Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach Nr 37, Prace
Matematyczne IV, 1973, 31–33.

Theorem
Let h : R× R→ R be a continuous function such that h is
a homeomorphism with respect to each variable separately. If
A,B ⊂ R are second category Baire sets, then the set h(A× B)
contains an interval.

M. E. Kuczma, M. Kuczma, An elementary proof and an
extension of a theorem of Steinhaus, Glasnik Mat. 6 (26) (1971),
11–18.

Theorem
If A,B ⊂ R have positive inner Lebesgue measure and f : D → R,
D ⊂ R2 is a region such that A× B ⊂ D, f ∈ C 1, f ′x 6= 0, f ′y 6= 0
in D, then f (A× B) contains an interval.
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Z. Kominek, Measure, category, and the sums of sets, The Amer.
Math. Monthly, Vol. 90, No 8 (Oct. 1983), 561–562.

Theorem
There exist disjoint sets A,B ⊂ R such that A ∪ B = R, A is a
second category Baire set, B has infinite Lebesgue measure and
A + B does not contain any nonempty open interval.

Let C be a perfect nowhere dense set with positive Lebesgue
measure. Put B = (Q − C ) ∪ (Q + C ) and A = R \ B. Then
Q − B ⊂ B and all conditions are fulfilled, because
(A + B) ∩ Q = ∅.
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Z. Kominek, On a decomposition of the space of real numbers,
Glasnik Matematički, Vol. 19 (1984), 231–233.

Theorem
If f : R× R→ R is such that f (x , ·) and f (·, y) are
homeomorphisms (for each y and x), then for each first category
set A0 ⊂ R with positive Lebesgue measure there exist C ,D ⊂ R
such that

1. C ∩ D = ∅, C ∪ D = R
2. A0 ⊂ C

3. C is of the first category (and positive measure)

4. Int f (C ,D) = ∅.
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Lemma
Let X be a set and gn : Tn → X, Tn ⊂ X, n = 1, 2, . . . be arbitrary
functions. For an arbitrary set A0 ⊂ X there exists a set A ⊂ X

containing A0 such that
∞⋃
n=1

gn(A) ⊂ A.

Proof.
Put A = X .

Original proof: If Ak =
∞⋃
n=1

gn(Ak−1), k = 1, 2, . . ., then

A =
∞⋃
k=0

Ak satisfies the assumptions

(
A =

∞⋃
k=1

Ak

)
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Z. Kominek, H. J. Miller, Some remarks on a theorem of
Steinhaus, Glasnik Matematički, Vol. 20 (1985), 337–344.

Theorem
If A,B ⊂ Rn, with A a Lebesgue measurable set having positive
Lebesgue measure and B a set having positive outer Lebesgue
measure, then A + B contains an n-dimensional ball.

Remark
If both sets A,B have positive outer Lebesgue measure, then it can
happen that Int(A + B) = ∅.
Let H be a Hamel basis for R, T - the subspace spanned by
H \ {h0}, h0 ∈ H. If A = T ∩ (0, 1), then me(A) > 0 and
Int(A + A) = ∅.
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W. Sander, Verallgemeinerungen eines Satzes von S. Picard,
Mannuscripta Math. 16 (1975), 11–25.

Theorem
If A,B ⊂ Rn, A is a second category Baire set and B is a second
category set, then A + B contains an n-dimensional ball.
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Z. Kominek, H. I. Miller, Some remarks on a theorem of
Steinhaus, Glasnik Matematički, Vol. 20 (1985), 337–344.

Theorem
Suppose A,B ⊂ R and that A is measurable and m(A) > 0,
me(B) > 0. Suppose further that H is an open set containing
A× B and that f is a real valued function defined on H.
If a ∈ A is a density point of A, b ∈ B is an outer density point of
B and the partial derivatives f ′x and f ′y of f are continuous in some
neighbourhood of (a, b) and f ′x(a, b) 6= 0 and f ′y (a, b) 6= 0, then
f (a, b) contains an interval.

Theorem
let I1, I2 be open intervals and let H = I1 × I2. Let f be a real
valued function defined on H such that the functions {f x}x∈I1 ,
{f y}x∈I2 are homeomorphisms of I2 (respectively I1) onto their
ranges, where f x : I2 → R with f x(y) = f (x , y) and f y : I1 → R
with f y (x) = f (x , y). If A ⊂ R is a second category Baire set and
B ⊂ R is a second category set and A× B ⊂ H then f (A× B)
contains an interval.
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R. Ger, Z. Kominek, M. Sablik, Generalized Smital’s Lemma
and a Theorem of Steinhaus, Radovi Matematički, Vol. 1 (1985),
101–119.
Motivation: Smital’s Lemma implies:

1. Steinhaus theorem,

2. Frechet-Sierpiski Theorem: each measurable function
f : R→ R such that f (x1 + x2) = f (x1) + f (x2) is of the form
f (x) = f (1) · x ,

3. each measurable and microperiodic function from R to R is
constant almost everywhere

4. each nonmeasurable subspace of the linear space R over Q is
saturated nonmeasurable.
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If (X , ρ) is a separable metric space and m∗ : 2X → [0,∞] is a
metric outer measure, m∗ is said to satisfy 5r -condition provided
for every bounded set E ⊂ X there exist two positive constants
c(E ) and C (E ) such that

m∗(K̄ (x , 5r)) < C (E ) ·m∗(K̄ (x , r))

for all x ∈ E and all r ∈ (0, c(E )).
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R. Ger, Z. Kominek, M. Sablik, Generalized Smital’s Lemma and a
Theorem of Steinhaus, Radovi Matematički, Vol. 1(1985),
101–119 (a continuation).

Theorem
Let (X , ρ) be a separable metric space with an ordinary metric ρ
and let m∗ : 2X → [0,∞] be a metric outer measure satisfying the
5r -condition. Suppose that we are given two sets E ,D ⊂ X, a
point x0 ∈ E and a map f : E × X → X such that

1. f ({x0} × D) is dense in X ;

2. lim
r→∞

m∗(f (E×{y})∩K̄(f (x0,y),r))
m∗(K̄(f (x0,y),r))

= 1

uniformly with respect to y ∈ D. Then, for any open ball
K (z , η) ⊂ X, we have

m∗ (K (z , η) ∩ f (E × D)) = m∗(K (z , η));

in other words:
m∗(X \ f (E × D)) = 0.
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Remark
For X = R, m∗- an outer Lebesgue measure and f (x , y) = x + y
we obtain Smital’s Lemma.

Theorem
Let X ,Y and Z be Baire spaces. Assume that a set E ⊂ X is of
second category at each of its points and D ⊂ Y is dense in Y .
Let h : X × Y → Z be such that the partial maps h(x , ·) and
h(·, y) are homeomorphisms of Y and X onto Z, respectively, for
all x ∈ X and y ∈ D. Then the set Z \ h(E × D) contains no
second category set having the Baire property.
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Z. Kominek, On an equivalent form of a Steinhaus’s Theorem,
Mathematica, Tome 30(53), No 1, 1988 25–27.
Consider conditions:

(1) (X ,+) is a separable Baire topological group (not necessarily
commutative);

(2) m is a measure defined on some σ-algebra M of subsets of X
such that

∀A∈M [m(A) > 0⇒ ∃F⊂A(m(F ) > 0 and F is a compact set.]

(3) ∀A∈M∀D⊂X
[
m(E ) > 0, card D ≤ ℵ0, cl D = X ⇒

m(X \ (E + D)) = 0
]

(4) ∀A,B∈M [m(A) > 0 and m(B) > 0⇒ Int(−A + B) 6= ∅]
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Theorem
Let assumptions (1) and (2) be fulfilled. Condition (3) implies the
condition (4)

Theorem
Let assumptions (1) and (2) be fulfilled. If every compact subset
belongs to the σ-algebra M, then (4) implies (3).

Remark
Measurability is important.
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Z. Kominek, W. Wilczyński, On sets for which the difference set
is the whole space, Rocznik Naukowo-Dydaktyczny WSP
w Krakowie, Zeszyt 207, Prace Matematyczne XVI, 1999, 45–51.

Theorem
Let A ⊂ Rp be a Lebesgue measurable set. If

lim sup
r→∞

mp(A ∩ Kp(0, r))

mp(Kp(0, r))
= λ >

1

2
,

then A− A = Rp.
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S. Solecki, Amenability, free subgroups and Haar null sets in
locally compact groups, Proc. London Math. Soc. 93(3), 2006,
693–722.
N. H. Bingham, A. J. Ostaszewski, The Steinhaus theorem and
regular variation: de Bruijn and after, Indagationes Mathematicae
24 (2013), 679–692.
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More friendly:

W. Wilczyński, A. Kharazishvili, On the translations of
measurable sets and sets with the Baire property, Bull. of the
Acad. of Sciences of Georgia 145(1) (1992), 43–46 (in Russian,
English and Georgian summary).

Theorem
If A ⊂ R is a measurable set, then for each sequence {xn}n∈N
convergent to 0 the sequence of characteristic functions
{χA+xn}n∈N converges in measure to χA.

Remark
There exists a measurable set A ⊂ R and a sequence {xn}n∈N
convergent to 0 such that {χA+xn}n∈N does nor converge almost
everywhere to χA.

Theorem
If A has the Baire property, then {χA+xn}n∈N converges to χA

except on a set of the first category.
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