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The Minimal Polynomial Revisited 
 

Let A  denote a finite-dimensional algebra over an arbitrary field F . 
 
 
Throughout the talk, we shall assume that A  is power-associative. By this we mean that 
while A  is not necessarily associative, the subalgebra of A  generated by any one element 
is associative, or equivalently, that powers of each element in A  are uniquely defined. 
 
 
Definition. We recall that a minimal polynomial of an element a  in a power-associative 
algebra over a field F  is a monic polynomial of lowest positive degree with coefficients in F  
that annihilates a . 
 
 
With this familiar definition, we can state the following non-surprising result: 

Theorem. Let A  be a finite-dimensional power-associative algebra over an field F . Then 
every element a  in our algebra possesses a unique minimal polynomial. 
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Example. Let n n×
F  be the algebra of n n×  matrices over F  with the usual matrix operations. 

Fix an idempotent matrix n nM ×∈F , M I≠≠≠≠ , and consider the set 

{ , }n nMAM A ×= ∈A F  

with the same familiar matrix operations. Then A  is a subalgebra of n n×
F  which contains 

the matrix M. In fact, M is the unit element in A , so the minimal polynomial of M in A  is 

( ) 1p t t= −= −= −= − . 

On the other hand, the unit element in n n×
F  is I , and it is easily seen that the minimal 

polynomial of M as an element in n n×
F  is 

2( )q t t t= − . 

 

It follows that the minimal polynomial of an element a may depend not only on the element, 
but also on the underlying algebra. 

 
The above example is a special case of a more general phenomenon: 

TheoremMP [G, Trans. AMS, 2007]. Let A  and B  be finite-dimensional power-associative 
algebras over a field F , such that A  is a subalgebra of B . Let a  be an element of A , and 
let p and q be the minimal polynomials of a  in the algebras A  and in B , respectively. Then 
either p q=  or ( ) ( )q t tp t= . 
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The Radius of an Element in a FDPA Algebra 
 

From now on, we shall restrict attention to the case where the base field F  of our algebra is 
either R  or C. 
 

Further, we shall abbreviate the expression finite-dimensional power-associative by FDPA. 
 
Main Definition [G, TAMS]. Let A  be a FDPA algebra over R  or C, let a  be an element of 
A , and let p be the minimal polynomial of a  in A . Then, the radius of a  in A  is defined as 

( ) max{ : ,  is a root of }r a p= ∈Cλ λ λλ λ λλ λ λλ λ λ . 

 
Unlike the minimal polynomial of an element a  in A  (which may depend on A ), the radius 
( )r a  is independent of our algebra in the following sense: 

 
Proposition. Let A  and B  be FDPA algebras over R  or C, such that A  is a subalgebra of 
B . Then the radii of a  in the algebras A  and B  coincide. 
 
Proof. Let p and q be the minimal polynomials of a  in the algebras A  and B , respectively. 
By TheoremMP, either p q=  or ( ) ( )q t tp t= . Hence, the non-zero roots of p and q are 

identical; so 

max{ : ,  is a root of } max{ : ,  is a root of }p q∈ = ∈C Cλ λ λ λ λ λλ λ λ λ λ λλ λ λ λ λ λλ λ λ λ λ λ , 

and we are done.     � 
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The radius has been computed for elements in several well-known FDPA algebras. For 
example, it was shown that if A  is an arbitrary matrix algebra over R  or C with the usual 
matrix operations, then the radius of a matrix A∈A  is the classical spectral radius, 

( ) max{ : ,  is an eigenvalue of }A A= ∈Cρ λ λ λρ λ λ λρ λ λ λρ λ λ λ . 

 
The following theorem, which is the heart of the matter, tells us that the radius retains some 
of the basic properties of the spectral radius not only for matrix algebras with the usual 
operations, but in the general FDPA case as well: 
 

Main Theorem [G, TAMS]. Let A  be a FDPA algebra over a field F , either R  or C. Then: 

(a) The radius is nonnegative. 

(b) The radius is homogeneous, i.e., for all a∈A  and αααα ∈F, 

( ) ( )r a r a=α αα αα αα α . 

(c) For all a∈A  and 1,2,3,...k = , 

( ) ( )k kr a r a= . 

(d) The radius vanishes only on nilpotent elements of A . 

(e) The radius is a continuous function on A . 
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A Non-Associative Example: The Cayley–Dickson Algebras 
 

The Cayley–Dickson algebras constitute a series of algebras, 0 1 2, , ,A A A … over the reals, 
where =Adim 2n

n . 
 

The first five Cayley–Dickson algebras are the reals R , the complex numbers C, the 
quaternions H, the octonions O, and the sedenions S, with dimensions 1, 2, 4, 8, and 16, 
respectively. 
 

While R  and C are both commutative and associative, H is no longer commutative, and O 
and S are not even associative. As it is, O is alternative, and S is merely power-associative. 
 

An algebra A  is called alternative if its subalgebra generated by any two elements is 
associative. We recall that A  is power-associative if the subalgebra generated by any one 
element is associative. So, if A  is alternative, then A  is power-associative. 
 

Despite the deteriorating associativity properties of the low-dimensional Cayley–Dickson 
algebras, we do have: 

Theorem.  All Cayley–Dickson algebras are power-associative. 
 
We note, in passing, that in recent years, the Cayley–Dickson algebras have gained 
renewed interest via several important applications such as the use of quaternions in GPS 
technology, and the employment of octonions and higher Cayley–Dickson algebras in 
modern physics (e.g., Quantum Field Theory, and the Born-Infeld modeld). 
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The Cayley–Dickson Doubling Process 
 

It is well-known that the Cayley–Dickson algebras can be obtained, inductively, from each 
other by the following Cayley–Dickson doubling process: 
 

We begin this process by setting 
0
=A R , and by defining *a , the conjugate of a real 

number a , to equal a . Then, assuming that −A 1n , ≥ 1n , has been determined, we define 

An  to be the set of all ordered pairs 

1{( , ) : , }n na b a b −= ∈A A , 

such that addition and scalar multiplication are taken componentwise on the Cartesian 
product − −×A A1 1n n , conjugation is given by 

( , )* ( *, )a b a b= −= −= −= − , 

and multiplication is given by 
( , )( , ) ( * , *)a b c d ac d b da bc= − + . 

 
With this definition, each element ∈Ana  is of the form = …1 2

( , , )na a a , ∈Rja ; and it follows 

that the conjugate of a  is given by 

1 2 2
* ( , , , )na a a a= − −… , 

and the unit element in An  is 

(1, 0, , 0)n =1 … . 
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To illustrate the Cayley–Dickson doubling process, let us start again with 0 =A R , and 

observe that 

1 {( , ) : , },= ∈A Rα β α βα β α βα β α βα β α β  

where 

1

( , ) ( , ),

( , )( , ) ( , ),

(1, 0).

∗ = −

= − +

=1

α β α βα β α βα β α βα β α β
α β γ δ αγ δβ δα βγα β γ δ αγ δβ δα βγα β γ δ αγ δβ δα βγα β γ δ αγ δβ δα βγ  

Therefore, we may identify 1A  with C upon writing 

z i= +α βα βα βα β  

as 

( , ).α βα βα βα β  

 

 

We point out that by construction, −A 1n  can be viewed as a subalgebra of An . It follows that 

since 3A , the algebra of the octonions, is no longer associative, all the Cayley–Dickson 

algebras for 3n ≥≥≥≥  are not associative. 
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Radius of Elements in the Cayley–Dickson Algebras 
 
Theorem [G & T. Laffey, Proc. AMS, 2015]. The radius of an element 1 2

( , , )n na a a= ∈A…  is 

the Euclidean norm of a , i.e., 

= ≡ + +⋯2 2
1 2

( ) nr a a a a . 

 

 
With this result, we can easily obtain the following helpful observation: 
 
Corollary. The Cayley–Dickson algebras are void of nonzero nilpotent elements. 

Proof. By the Main Theorem, the radius vanishes only on nilpotent elements. Since the 
radius on the Cayley–Dickson algebras happens to be a norm, and since a norm vanishes 
only at 0a = , the proof is complete.     ■ 
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Subnorms on FDPA Algebras 
 
In order to discuss applications of the radius, we begin with the following definition. 
 
Definition. Let A  be a FDPA algebra over a field F , either R  or C. Then a real-valued 
function 

→:f A R  

is called a subnorm if for all ∈a A  and ∈Fαααα , 

( ) 0, 0,

( ) ( ).

f a a

f a f a

> ≠

=α αα αα αα α
 

 
We recall that a real-valued function N  is a norm on A  if for all pairs ∈,a b A  and ∈Fαααα , 

( ) 0, 0,

( ) ( ),

( ) ( ) ( ).

N a a

N a N a

N a b N a N b

> ≠

=

+ ≤ +

α αα αα αα α  

Hence, a norm is a subadditive subnorm. 
 
We remark that while in our finite-dimensional setting, a norm is always a continuous 
function on A , a subnorm may fail to be continuous when dim 2≥A . 
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A Formula for the Radius 
 

Having defined a subnorm, we may state a variant of a result which is well-known in the 
context of complex Banach algebras, and which is often referred to as the Gelfand formula. 
 

TheoremGF [G, Lin. & Multilin. Algebra, 2007]. Let f  be a continuous subnorm on a FDPA 
algebra A  over R  or C, and let r  denote the radius on A . Then for every ∈a A , 

1/lim ( ) ( )k k

k
f a r a

→∞
= . 

 

Example 1. If f  is a continuous subnorm on a matrix algebra A  over R  or C with the usual 
matrix operations, then 

1/lim ( ) ( ),k k

k
f A A A

→∞
= ∈Aρρρρ . 

Example 2. If f  is a continuous subnorm on the Cayley–Dickson algebra nA , then 

1/lim ( ) ,k k
n

k
f a a a

→∞
= ∈A . 

We observe for instance, that for each fixed p, 0 p< ≤ ∞< ≤ ∞< ≤ ∞< ≤ ∞ , the function 

= + = ∈⋯ …

1/
1 12 2

( ) , ( , , )n n

pp p
np

a a a a a a A , 

is a continuous subnorm on nA  (a norm if and only if ≤ ≤ ∞1 p ). Hence, by Example 2, 

→∞
=

1/
lim .

k
k

pk
a a  
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Stability of Subnorms 
 

In order to discuss a second applications of the radius, we need the following definition: 

Definition. Let A  be a FDPA algebra over R  or C. Then a subnorm f  on A  is stable if 
there exists a constant 0>σσσσ  such that for all a∈A  and 1, 2, 3, ...k = , 

( ) ( )k kf a f a≤ σσσσ . 

 
The notion of stability plays an important role in several areas of mathematics, e.g., 
functional analysis, and numerical analysis of time-dependent partial differential equations. 
 
With the above definition of stability we may now quote: 

TheoremST [G, TAMS]. If f  is a continuous subnorm on a FDPA algebra A  over R  or C, 
and if A  be void of nonzero nilpotent elements, then f  is stable if and only if f r≥  on A . 
 
If f r≥  on A , we shall often say that f  majorizes the radius on A . 
 
By the Main Theorem, if the algebra A  is void of nonzero nilpotents, it is easily seen that 
the radius is a continuous subnorm on A . Hence, TheoremST implies: 

Corollary. Let A , a FDPA algebra over R  or C, be void of nonzero nilpotent elements. 
Then the radius is the smallest stable continuous subnorm on A . 
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We recall, for example, that the Cayley–Dickson algebras are void of nonzero nilpotents. 
Hence, TheoremST and its corollary can be rephrased to read: 

Theorem. Let f  be a continuous subnorm on nA . Then: 

(a) f  is stable if and only if f  majorizes the Euclidean norm on nA . 

(b) The Euclidean norm is the smallest continuous stable subnorm on nA . 

 
For example, we recall that for each fixed p, 0 p< ≤ ∞< ≤ ∞< ≤ ∞< ≤ ∞ , the function 

= + = ∈⋯ …

1/
1 12 2

( ) , ( , , )n n

pp p
np

a a a a a a A , 

is a continuous subnorm on nA  (a norm for ≤ ≤ ∞1 p ). So | |p⋅  is stable on nA  if and only if 

≥ on np
a a A , 

which holds precisely when 0 2p< ≤ . 

 
On the other hand, TheoremGF tells us that all continuous subnorms on a FDPA algebra 
over R  or C satisfy the Gelfand formula. 
 

Confronting TheoremGF with the above example for 2p >>>>  (where | |p⋅  is an unstable norm), 

we realize that while continuity of a subnorm f  is enough to force the Gelfand formula, it is 
not enough to force stability, not even when f  is a norm, and the underlying algebra is void 
of nonzero nilpotents. 
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TheoremST stated that if f  is a continuous subnorm on a FDPA algebra A  over R  or C, 
and if A  is void of nonzero nilpotent elements, then f  is stable if and only if f r≥  on A . 
 

We claim that the assumption that A  is void of nonzero nilpotent elements cannot be 
dropped, not even when A  is an associative algebra and f  is a norm. 
 

Indeed (compare [A. Palacios, J. Algebra, 2000]), let ×n n
C  be the algebra of ×n n  complex 

matrices with the usual operations, and let 0B ≠  be a fixed nilpotent matrix in ×n n
C  such 

that 2 0B = . Consider the 2-dimensional subalgebra of ×n n
C  generated by I  and B , i.e., 

= + ∈{ : , }I Bα β α βα β α βα β α βα β α βA C . 

Clearly, A  is an associative algebra, which contains nonzero nilpotent elements, i.e. B . 

Define now a norm on A : 

( ) max{ , },N I B I B+ = + ∈Aα β α β α βα β α β α βα β α β α βα β α β α β . 

Then for every matrix +I Bα βα βα βα β , 

+ ≥ = +( ) ( )N I B I Bα β α ρ α βα β α ρ α βα β α ρ α βα β α ρ α β , 

so N  majorizes the radius on A . 

On the other hand, the matrix I B+  satisfies ( )kI B I kB+ = + . Hence 

lim (( ) )k

k
N I B

→∞→∞→∞→∞
+ = ∞+ = ∞+ = ∞+ = ∞ , 

which is enough to imply that N  is unstable on A . 
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Our last example showed that in the presence of nonzero nilpotents, a norm on an algebra 
of complex matrices may fail to be stable, even when this norm majorizes the radius. 
 
In view of this example, we shall now state two results which provide criteria for the stability 
of norms on complex matrices without ruling out nonzero nilpotent elements. 
 
The first of these results, known as the Kreiss Matrix Theorem, is unusually general since it 
deals with arbitrary sets of matrices rather than with algebras: 
 

Theorem [H.-O. Kreiss, BIT, 1962]. Let S  be an arbitrary set of matrices in n n×
C , and let N  

be a norm on n n×
C . Then, there exists a constant 0>σσσσ  such that 

( ) ( ) , , 1, 2, 3,...k kN A N A A k≤ ∈ =Sσσσσ , 

if and only If there exists a constant > 0ττττ  such that for each A∈S  and all z∈C  with 1z > , 

the resolvent 1( )A zI −−  exists and 

−− ≤
−

1(( ) )
1

N A zI
z

ττττ
. 

 
The second result, whose proof heavily hinges on of Kreiss' theorem, is: 

Theorem [S. Friedland & C. Zenger, Lin. Algebra & Its Appl., 1984]. Let N  be a norm on 
n n×
C . Then N  is stable if and only If N ≥ ρρρρ  on n n×

C . 
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Discontinuous Subnorms 
 
It was mentioned earlier that if dim 2≥A , then contrary to norms, subnorms on A  may fail 
to be continuous. 
 
To support this statement, let f  be a continuous subnorm on a FDPA algebra A  over a field 
F , either R  or C, where dim 2≥A . Fix an element 0 0a ≠  in A , and consider the linear 

subspace of A  generated by 0a , 

0{ : }aα α= ∈V F . 

Fix 1κ > , and define 

( ), ,
( )

( ), .

f a a
g a

f a a
κ

κ ∈
= 

∈

V

VA�
 

 

Evidently, gκ  is a subnorm on A . Moreover, gκ  is discontinuous at 0a , since 

0

0 0lim ( ) ( ) ( )
a a
a

g a f a g aκ κ
→
∉

= ≠

V

. 

 
We note that despite its discontinuity, gκ  is well-behaved in the sense that it satisfies the 

Gelfand formula, it is stable, and it does majorize the radius on A . 
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A Subnorm which Is Discontinuous Everywhere 
 
We conclude this talk by displaying a subnorm which, in contrast to gκ , is discontinuous 

everywhere. 
 
To this end, we need the following short detour. 
 
Consider the Cauchy functional equation 

( ) ( ) ( ), ,x y x y x y+ = + ∈Rϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ . 

It is well known that the only continuous solutions of this equation are of the form 

( )x x=ϕ γϕ γϕ γϕ γ  

where γγγγ  is an arbitrary real constant. 

 
It is also known ([G. Hamel, Math. Ann., 1905]) that the Cauchy equation has discontinuous 
solutions, and that all such solutions are discontinuous everywhere. 
 
Finally, given a positive constant c , it is known that one may select a discontinuous solution 
of the Cauchy equation which is c -periodic. 
 
With these facts, we can now state: 
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Theorem [G & W.A.J. Luxemburg, Lin. & Multilin. Algebra, 2001]. Let f  be a continuous 
subnorm on C, and let ϕϕϕϕ  be a discontinuous ππππ -periodic solution of the Cauchy equation 

( ) ( ) ( ), ,x y x y x y+ = + ∈Rϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ . 

Consider the function 
(arg )( ) ( ) ,zh z f z e z= ∈Cϕϕϕϕ

ϕϕϕϕ , 

where argz denotes the principal argument of z , 0 arg 2z≤ < ππππ , and arg0 0= . Then: 

(a) hϕϕϕϕ  is a subnorm on C. 

(b) hϕϕϕϕ  is discontinuous everywhere in C. 

(c) hϕϕϕϕ  is stable on C. 

(d) hϕϕϕϕ  does not satisfies the Gelfand formula on C. 

(e) hϕϕϕϕ  does not majorize the radius on C. 

 
Referring to part (d) of the theorem, it can be shown that the sets of complex numbers on 
which hϕϕϕϕ  satisfies the Gelfand formula and the set on which hϕϕϕϕ  violates this formula, are 

both dense in C. 
 

Similarly, regarding part (e), it can be shown that the set of complex numbers where hϕϕϕϕ  

majorizes the radius and the set where hϕϕϕϕ  fails to do so, are again dense in C. 



 19 

 


