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Degrees

• 1968 - MSc (magister), Jagiellonian University,
Brench in Katowice;

• 1971 - PhD (doktor), Silesian University;

• 1976 - post-doctoral degree (doktor habilitowany),
Silesian University;

• 1990 - Professor (profesor nauk matematycznych),
President of Poland, Warsaw.
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Functions at Silesian University

• Since 1987 - Head of the Department of Functional Equations;

• 1990–1992 - Vice-Rector for Teaching Affairs;

• 2005–2008 - Vice-Director for Science of the Institute of
Mathematics;

• 2008–2012 - Director of the Institute of Mathematics.
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PhD students

1. 1981 - Kazimierz Nikodem
2. 1985 - Irena Fidytek
3. 1985 - Zbigniew Gajda
4. 1987 - Piotr Cholewa
5. 1988 - Paweł Urban
6. 1994 - Roman Badora
7. 1998 - Justyna Sikorska
8. 2000 - Barbara Kulpa
9. 2001 - Katarzyna Domańska
10. 2002 - Tomasz Szostok
11. 2003 - Eleonora Czyba
12. 2004 - Dorota Budzik
13. 2006 - Iwona Tyrala
14. 2007 - Włodzimierz Fechner
15. 2010 - Tomasz Kochanek
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Conferences, Colloquium Talks

• over 130 talks at international symposia and conferences in
Europe, America and Asia;

• over 50 colloquium talks at many universities, among others
in:
- Chicago, Amherst, Orlando (USA)
- Waterloo, Toronto, Ottawa (Canada)
- Karlsruhe, Clausthal, Erlangen (Germany)
- Graz, Innsbruck (Austria)
- Milan, Rome (Italy)
- Bern (Switzerland)
- Debrecen (Hungary)
- Hajfa (Israel)
- Aarhus (Denmark)
- Barcelona (Spain)
- Chengdu (China)
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Publications

∼ 120 publications in prestigious mathematical journals;

Co-author of the monograph:

Bogdan Choczewski, Roman Ger, Marek Kuczma,
Iterative Functional Equations, Cambridge University Press,
Cambridge - New-York - Sydney, 1990,
in the series "Encyclopedia of Mathematics and Applications"
second edition - 2008.
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Quotations, HI

According to Google Scholar:

• Number of quotations - 1852

• Hirsch Index - 19

16 of the papers got an award in the Marek Kuczma Contest
for the best Polish Paper on Functional Equations
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Research fields

• Functional equations (mainly in several variables):
- Cauchy, Pexider, Jensen, Fischer-Muszély, Mikusiński

equations
- equations with restricted domains

(among others the habilitation dissertation:
On some functional equations with restricted domain,
Prace Naukowe Uniwersytetu Śla̧skiego, 1976)

- conditional and alternative equations
- equations almost everywhere
- orthogonal additivity
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Research fields

• Hyers-Ulam stability:
- superstability
- stability of additive, polynomial, exponential functions

• Set-valued maps:
- subadditive, multiadditive maps
- selections

• Means
• Difference operators
• Iteration groups
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Research fields -convexity

• Over 25 papers (i.e. about 20%) devoted to (or related with)
convexity. Main topics:

- convex and Jensen-convex functions
- higher-order convexity
- approximately convex functions
- delta-convex functions
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Research fields -convexity

• First publication:
Some remarks on convex functions, Fundamenta Mathematica 66
(1970), 255-262.

• PhD dissertation:
Some properties of polynomial functions and convex functions of
higher order, Silesian University, 1971.

• Prize-Winner in the first Marek Kuczma Contest for the best
Polish Paper on Functional Equations:
n-convex functions in linear spaces, Aequat. Math. 10 (1974),
172-176.

• PhD dissertation of the first PhD student:
K. N., Convex and quadratic stochastic processes, Silesian
University, 1981.
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Stationary sets

Definition
X - a nonempty set; K - a class of functions f : X → R.
A set T ⊂ X is called stationary for the class K iff for every f ∈ K
the condition f |T = 0 implies that f = 0.
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Examples

1. Let K1 be the family of all continuous functions f : R→ R.
Then T ⊂ R is stationary for K1 iff it is dense in R.

2. Let K2 be the family of all polynomials f : R→ R of degree at
most n. Then T ⊂ R is stationary for K2 iff it has at least n + 1
elements.

3. Let K3 be the family of all additive functions f : R→ R.
Then T ⊂ R is stationary for K3 iff it contains a Hamel basis of R
over Q.
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Jensen convex functions

In 1999 during the 23-rd Summer Symposium on Real Analysis
Prof.S.Marcus posed the following problem:

Characterize the stationary sets for the class of Jensen convex
functions.

Recall that a function f : D → R is Jensen convex if

f
(x + y

2
)
≤ f (x) + f (y)

2 , ∀x , y ∈ D.

Denote by J(D) the family of all Jensen convex functions on D.
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A partial answer

Theorem (M. Babilonová, 1999):

A set T ⊂ Rn is stationary for the class J(Rn) if and only if
cl convQ T = Rn and T ∈ A(Rn).

A(Rn) is the set–class introduced by R. Ger and M. Kuczma (On
the boundedness and continuity of convex functions and additive
functions, Aequat. Math. 4, 1970):

A(Rn) = {T ⊂ Rn : every Jensen convex function f : D → R,

where D ⊃ T is an open convex set, bounded from above on T
is continuous}.
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A characterization

R. Ger and K. Nikodem, A characterization of stationary sets
for the class of Jensen convex functions, Functional Equations-
Results and Advances, Kluwer Academic Publishers, 2002,
25–28.
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A characterization

Theorem 1
Let D be an open convex subset of a Hausdorff locally convex
space X . A set T ⊂ X is stationary for the class J(D) if and only
if D ⊂ cl convQ T and T ∈ A(X ).

Theorem 2
Let D ⊂ Rn be an open convex set and T be a subset of D
symmetric with respect to a point. Then T is stationary for the
class J(D) if and only if convQ T = D.
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Strongly convex functions

Definitions
• f : I → R is called strongly convex with modulus c > 0 if

f
(
tx + (1− t)y

)
≤ tf (x) + (1− t)f (y)− ct(1− t)(x − y)2,

for all x , y ∈ I and t ∈ [0, 1];
• f is strongly Jensen convex with modulus c if

f
(

x + y
2

)
≤ f (x) + f (y)

2 − c
4 (x − y)2, x , y ∈ I.

B.T. Polyak 1966 ;
A.W. Roberts and D.E. Varberg,
N.Merentes, J.L.Sanchez, Zs.Páles, A.Gilányi, R.Ger, K.N., ...
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Strongly n-convex functions

R. Ger and K. Nikodem, Strongly convex functions of higher
order , Nonlinear Anal. 74 (2011), 661–665.
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Divided differences

I ⊂ R - an interval, n ∈ N, x0, . . . , xn - distinct points in I and
f : I → R. Denote by [x0, . . . , xn; f ] the divided difference of f at
x0, . . . , xn defined by the recurrence

[x0; f ] = f (x0),

[x0, . . . , xn; f ] = [x1, . . . , xn; f ]− [x0, . . . , xn−1; f ]
xn − x0

, n ∈ N.

Following Hopf (1926) and Popoviciu (1934) f : I → R is called
convex of order n (or n-convex) if

[x0, . . . , xn+1; f ] ≥ 0

for all x0 < . . . < xn+1 in I.
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Strongly n-convex functions

Definition
f : I → R is strongly convex of order n with modulus c
(or strongly n-convex with modulus c) if

[x0, . . . , xn+1; f ] ≥ c

for all x0 < . . . < xn+1 in I.

For n = 1 condition is equivalent to

f (tx0 + (1− t)x2) ≤ tf (x0) + (1− t)f (x2)− ct(1− t)(x2 − x0)2

for all x0, x2 ∈ I and t ∈ (0, 1), which means that f is strongly
convex with modulus c.
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Characterizations by derivatives

Theorem 3
f : I → R is strongly n-convex with modulus c if and only if it is of
the class Cn−1 in I and its (n − 1)-th derivative f (n−1) is strongly
convex with modulus c

2 (n + 1)! .

Theorem 4
let f : I → R be of the class Cn. Then f is strongly n-convex with
modulus c iff f (n) satisfies the condition

(f (n)(x)− f (n)(y))(x − y) ≥ c(n + 1)!(x − y)2, x , y ∈ I.

Theorem 5
Let f : I → R be of the class Cn+1 . Then f is strongly n-convex
with modulus c iff f (n+1) ≥ c(n + 1)! , x ∈ I.
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convex with modulus c

2 (n + 1)! .

Theorem 4
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Difference operator

I ⊂ R - an interval, f : I → R and h > 0.
Let 4n

h be the difference operator of n-th order with increment h
defined by the recurrence:

40
hf (x) = f (x), 4n

hf (x) = 4n−1
h f (x + h)−4n−1

h f (x), n ∈ N.

A function f : I → R is said to be n-convex in the sense of Jensen
(or Jensen n-convex) if

4n+1
h f (x) ≥ 0

for all x ∈ I and h > 0 such that x + (n + 1)h ∈ I.
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Strongly Jensen n-convex functions

Definition
f : I → R is strongly n-convex with modulus c > 0 in the sense of
Jensen (or strongly Jensen n-convex with modulus c) if

4n+1
h f (x) ≥ c(n + 1)! hn+1

for all x ∈ I and h > 0 such that x + (n + 1)h ∈ I.

For for n = 1 this condition reduces to

f
(u + v

2

)
≤ f (u) + f (v)

2 − c
4 (u − v)2, u, v ∈ I,

which means that f is strongly Jensen convex with modulus c.

K. Nikodem Convexity in the output of Professor Roman Ger UZ 2012 25/30



Strongly Jensen n-convex functions

Definition
f : I → R is strongly n-convex with modulus c > 0 in the sense of
Jensen (or strongly Jensen n-convex with modulus c) if

4n+1
h f (x) ≥ c(n + 1)! hn+1

for all x ∈ I and h > 0 such that x + (n + 1)h ∈ I.

For for n = 1 this condition reduces to

f
(u + v

2

)
≤ f (u) + f (v)

2 − c
4 (u − v)2, u, v ∈ I,

which means that f is strongly Jensen convex with modulus c.

K. Nikodem Convexity in the output of Professor Roman Ger UZ 2012 25/30



Ciesielski-type theorem

Theorem 6
If a function f : I → R is strongly Jensen n-convex with modulus
c > 0 and bounded on a set A ⊂ I having positive Lebesgue
measure (or of the second cathegory and with the Baire property),
then f is continuous on I and strongly n-convex with modulus c.
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n-parameter families

Following Tornheim (1950) a family F of continuous real functions
defined on I ⊂ R is called an n-parameter family if for any n points
(x1, y1), . . . , (xn, yn) ∈ I ×R with x1 < . . . < xn there exists exactly
one ϕ ∈ F such that ϕ(xi) = yi for i = 1, . . . , n.

Examples

Fn = {anxn + · · ·+ a1x + a0 : a0, . . . an ∈ R},

Fn,c = {cxn+1 + anxn + · · ·+ a1x + a0 : a0, . . . an ∈ R}.
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F -convex functions

A function f : I → R is convex with respect to the n-parameter
family F (shortly, F-convex) if for any x1 < . . . < xn in I

f (x) ≤ ϕ(x1,f (x1)),...,(xn,f (xn))(x), x ∈ [xn−1, xn].

ϕ(x1,y1),...,(xn,yn) is the unique function in F determined by
(x1, y1), . . . , (xn, yn). .
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Connections with strong convexity

It is well known that
f : I → R is Fn-convex iff f is n-convex.

We have also

Theorem 7
A function f : I → R is strongly n-convex with modulus c iff f is
Fn,c -convex.
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Dear Roman -
Happy Birthday

and congratulation to you!
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