

ADAM MICKIEWICZ UNIVERSITY IN POZNAŃ

The role of Δ_2 -condition in Orlicz spaces

Katowice, 20-21.11.2015

Henryk Hudzik Faculty of Mathematics and Computer Science of the Adam Mickiewicz University in Poznań Poznań, Poland email: hudzik@amu.edu.pl

www.amu.edu.pl

Let Φ be an Orlicz function, that is, $\Phi : \mathbb{R} \to \mathbb{R}_+ := [0, \infty)$, Φ is convex, even, $\Phi(0) = 0$ and not identically equal to 0. The last property is equivalent to the fact that $\Phi(u) \to \infty$ as $u \to \infty$.

Let (Ω, Σ, μ) be a complete and non-trivial measure space and $L^{\circ} := L^{\circ}(\Omega, \Sigma, \mu)$ be the space of (equivalence classes of) Σ -measurable functions $x : \Omega \to \mathbb{R}$.

We define the convex modular $I_\Phi: L^o o \mathbb{R}^e_+ = [0,\infty]$ by the formula

$$I_{\Phi}(x) = \int_{\Omega} \Phi(x(t)) d\mu(t).$$

Then the set

$$B_{\Phi} = \{ x \in L^o : I_{\Phi}(x) \leq 1 \}$$

is absolutely convex, that is, for any $x, y \in B_{\Phi}$ and any $\alpha, \beta \in \mathbb{R}$ with $|\alpha| + |\beta| \leq 1$, we have $\alpha x + \beta y \in B_{\Phi}$.

Next the Minkovsky functional

$$m_{\Phi}(x) = \inf \left\{ \lambda > 0 : rac{x}{\lambda} \in B_{\Phi}
ight\}$$

is a function semi-norm on L^o , that is, $m_{\Phi} : L^o \to \mathbb{R}^e_+ := [0, \infty]$, $m_{\Phi}(0) = 0$, $m_{\Phi}(\lambda x) = |\lambda| m_{\Phi}(x)$ for any $x \in L^o$ and $\lambda \in \mathbb{R}$, and $m_{\Phi}(x+y) \leq m_{\Phi}(x) + m_{\Phi}(y)$ for all $x, y \in L^o$.

It was important to distinguish the biggest possible subset of L^o on which the functional m_{Φ} is finite. It is easy to see that this subset is the following one

$$L^{\Phi} = L^{\Phi}(\Omega, \Sigma, \mu) = \{x \in L^{o} \colon I_{\Phi}(\lambda x) < \infty \text{ for some } \lambda > 0\}$$

and it is called the Orlicz space. It is easy to check that $(m_{\Phi}(x) = 0 \land x \in L^{\Phi}) \Rightarrow x = 0$. Therefore, the Minkovsky functional m_{Φ} is a norm on the Orlicz space L^{Φ} . It is called the Luxemburg norm and it is denoted by $\|.\|_{\Phi}$.

Let us denote

$$B_{m,\Phi} = \left\{ x \in L^{\Phi} : I_{\Phi}(x) < 1 \right\}, \quad \overline{B_{m,\Phi}} = \left\{ x \in L^{\Phi} : I_{\Phi}(x) \leq 1 \right\},$$
$$B_{\parallel,\parallel_{\Phi}} = \left\{ x \in L^{\Phi} : \parallel x \parallel_{\Phi} < 1 \right\}, \quad \overline{B_{\parallel,\parallel_{\Phi}}} = \left\{ x \in L^{\Phi} : \parallel x \parallel_{\Phi} \leq 1 \right\}.$$

It is well known that $\overline{B_{m,\Phi}} = \overline{B_{\|\cdot\|_{\Phi}}}$ and that $B_{\|\cdot\|_{\Phi}} \subset B_{m,\Phi}$ for any Orlicz function Φ because $I_{\Phi}(x) \leq \|x\|_{\Phi}$ whenever $\|x\|_{\Phi} \leq 1$.

We say that $x \in L^{\Phi}$ has order continuous norm (or that x is order continuous) if for any sequence $(x_n)_{n=1}^{\infty}$ in L^{Φ} such that $0 \leq x_n \leq |x| \ \mu$ -a.e. in Ω , we have the implication: $(x_n \to 0 \ \mu$ - a.e. in $\Omega) \Rightarrow (||x_n||_{\Phi} \to 0)$. The set of all order continuous elements in L^{Φ} is denoted by $(L^{\Phi})_a$. If the measure space (Ω, Σ, μ) is non-atomic, then it is known that

$$(L^{\Phi})_{a}=E^{\Phi},$$

where $E^{\Phi} = \{x \in L^{\circ} : I_{\Phi}(\lambda x) < \infty \text{ for any } \lambda > 0\}$ and it is also known that $(L^{\Phi})_{a} = L^{\Phi}$ if and only if Φ satisfies condition $\Delta_{2}(\infty)$ whenever $\mu(\Omega) < \infty$ and condition $\Delta_{2}(\mathbb{R}_{+})$ whenever $\mu(\Omega) = \infty$. Let us recall that $\Phi \in \Delta_{2}(\infty)$ (resp. $\Phi \in \Delta_{2}(\mathbb{R}_{+})$) whenever there exists K > 0 such that $\Phi(u) \leq K\Phi(u)$ for $u \geq u_{0}$, where $u_{0} > 0$ (resp. for all $u \geq 0$).

Theorem

If the measure space (Ω, Σ, μ) is non-atomic, then the following assertions are equivalent:

- (a) $(L^{\Phi})_{a} = L^{\Phi}$, (b) $\ell^{\infty} \not\hookrightarrow L^{\Phi}$ order isometrically,
- (c) $B_{m,\Phi} = B_{\|.\|_{\Phi}}$,
- (d) the set $B_{m,\Phi}$ is open in the norm topology given by the norm $\|.\|_{\Phi}$,
- (e) the generated Orlicz function Φ satisfies suitable Δ_2 -condition, that is, condition $\Delta_2(\infty)$ if $\mu(\Omega) < \infty$ and condition $\Delta_2(\mathbb{R}_+)$ if $\mu(\Omega) = \infty$.

Proof. In order to prove these equivalences let us start with proving the implication $(b) \Rightarrow (e)$. We will restrict ourselves to the case of the non-atomic finite measure (because the case of the non-atomic infinite measure is easier).

We need to prove that if μ is non-atomic and finite, and $\Phi \notin \Delta_2(\infty)$ then $(L^{\Phi}, \|.\|_{\Phi})$ contains an order isometrically subspace of ℓ^{∞} . First, we will show that if $\Phi \notin \Delta_2(\infty)$, then for any $\varepsilon \in (0, 1)$ there exists $x \in L^{\Phi}$ such that $l_{\Phi}(x) < \varepsilon$ and $l_{\Phi}(\lambda x) = \infty$ for any $\lambda > 1$. Let us note first that $\Phi \notin \Delta_{1+\frac{1}{n}}(\infty)$ for any $n \in \mathbb{N}$, whenever $\Phi \notin \Delta_2(\infty)$. This means that there exists a sequence $(u_n)_{n=1}^{\infty}$ such that

$$u_n < u_{n+1} \ \forall \ n \in \mathbb{N}, \quad u_n \to \infty \text{ as } n \to \infty, \quad \Phi(u_1)\mu(\Omega) \geqslant \varepsilon$$

and

$$\Phi\left(\left(1+\frac{1}{n}\right)u_n\right)>2^n\Phi(u_n).$$

Let us choose a sequence $(A_n)_{n=1}^{\infty}$ in Σ of pairwise disjoint sets such that

$$\Phi(u_n)\mu(A_n) = \frac{\varepsilon}{2^{n+1}}; \quad n = 1, 2, 3, \dots$$

Then, defining

$$x=\sum_{n=1}^{\infty}u_n\chi_{A_n}$$

we have

$$\begin{split} l_{\Phi}(x) &= \int_{\Omega} \Phi(x(t)) \, d\mu(t) = \sum_{n=1}^{\infty} \Phi(u_n) \mu(A_n) \\ &= \varepsilon \sum_{n=1}^{\infty} 2^{-n-1} = \frac{\varepsilon}{2} < \varepsilon. \end{split}$$

Moreover, given any $\lambda > 1$, by $1 + \frac{1}{n} \to 1$ as $n \to \infty$, one can find $m \in \mathbb{N}$ such that $1 + \frac{1}{n} \leq \lambda$ for any $n \geq m$, whence

$$\Phi(\lambda u_n) \ge \Phi\left(\left(1+\frac{1}{n}\right)u_n\right) > 2^n \Phi(u_n), \ \forall n \ge m.$$

Henryk Hudzik

Therefore

$$\begin{split} l_{\Phi}(\lambda x) &= \sum_{n=1}^{\infty} \Phi(\lambda u_n) \mu(A_n) \geqslant \sum_{n=m}^{\infty} \Phi\left(\left(1+\frac{1}{n}\right) u_n\right) \mu(A_n) \\ &\geqslant \sum_{n=m}^{\infty} 2^n \Phi(u_n) \mu(A_n) \\ &= \frac{\varepsilon}{2} \sum_{n=m}^{\infty} 1 = \frac{\varepsilon}{2} \cdot \infty = \infty. \end{split}$$

Now, we start to build an order isometric copy of ℓ^{∞} in L^{Φ} . Let, for any $n \in \mathbb{N}$, $B_n \in \Sigma$ be such that $\mu(B_n) = 2^{-n}\mu(\Omega)$ and the sets from this sequence are pairwise disjoint. Next, we can build the sequence of finite non-atomic measure spaces $(B_n, \Sigma \cap B_n, \mu|_{\Sigma \cap B_n})_{n=1}^{\infty}$. From the above construction we know that there exist a sequence $(x_n)_{n=1}^{\infty}$ in $L(\Omega, \Sigma, \mu)$ such that $x_n(t) = 0$ for any $t \in \Omega \setminus B_n$, $l_{\Phi}(x_n) < 2^{-n}$ and $l_{\Phi}(\lambda x_n) = \infty$ for any $\lambda > 1$. Let us define the operator $\mathcal{I}: \ell^{\infty} \to L^{\Phi}$ by

$$\ell^{\infty} \ni c = (c_n) \to \mathcal{I}c = \sum_{n=1}^{\infty} c_n x_n \in L^{\Phi}, \ \forall c \in \ell^{\infty}.$$

Then we have

$$\begin{split} l_{\Phi}\left(\frac{\mathcal{I}c}{\|c\|_{\infty}}\right) &= \sum_{n=1}^{\infty} l_{\Phi}\left(\frac{|c_n|}{\|c\|_{\infty}}x_n\right) \leqslant \sum_{n=1}^{\infty} l_{\Phi}(x_n) \\ &\leqslant \sum_{n=1}^{\infty} 2^{-n} = 1, \end{split}$$

which shows that $\mathcal{I}c \in L^{\Phi}$ and that $\|\mathcal{I}c\|_{\Phi} \leq \|c\|_{\infty}$. On the other hand, given any $\lambda \in (0, 1)$ one can find $m \in \mathbb{N}$ such that $\frac{|c_m|}{\lambda \|c\|_{\infty}} > 1$, whence

$$I_{\Phi}\left(\frac{\mathcal{I}c}{\lambda\|c\|_{\infty}}\right) = \sum_{n=1}^{\infty} I_{\Phi}\left(\frac{c_n x_n}{\lambda\|c\|_{\infty}}\right) \ge I_{\Phi}\left(\frac{|c_m|}{\lambda\|c\|_{\infty}} x_m\right) = \infty.$$

Henryk Hudzik

In consequence,

$$\frac{\mathcal{I}c}{\lambda \|c\|_{\infty}} \bigg\|_{\Phi} \ge 1,$$

that is, $\|\mathcal{I}c\|_{\Phi} \geqslant \lambda \|c\|_{\infty}$ and, by the arbitrariness of $\lambda \in (0,1)$,

$$\|\mathcal{I}c\|_{\Phi} \geq \|c\|_{\infty}.$$

In such a way we proved that \mathcal{I} is an isometry. It is obvious that the operator \mathcal{I} is linear and, since the functions x_n that were used to the construction of the operator \mathcal{I} are non-negative, the operator \mathcal{I} is also non-negative.

In consequence, if $c = (c_n), d = (d_n) \in \ell^{\infty}$ and $c \leq d$, that is, $c_n \leq d_n$ for any $n \in \mathbb{N}$, then $\mathcal{I}(d - c) \ge 0$, whence $\mathcal{I}(d) - \mathcal{I}(c) = \mathcal{I}(d - c) \ge 0$. We proved in such a way that the linear isometry \mathcal{I} is an order isometry. $(e) \Rightarrow (a)$

Now we will show that if $\Phi \in \Delta_2$, then $(L^{\Phi})_a = L^{\Phi}$. Under the assumption $\Phi \in \Delta_2$ take any $x \in L^{\Phi}$ and any sequence $(x_n)_{n=1}^{\infty}$ in L^{Φ} such that $0 \leq x_n \leq |x|$ for μ -a.e. $t \in \Omega$ and any $n \in \mathbb{N}$ as well as that $x_n \to 0$ μ -a.e. in Ω . Let us take any $\lambda > 0$. Since $x \in L^{\Phi}$ and $\Phi \in \Delta_2$, we have that $I_{\Phi}(\lambda x) < \infty$. Moreover,

$$0 \leq \Phi(x_n(t)) \leq \Phi(x(t))$$

for μ -a.e. $t \in \Omega$ and all $n \in \mathbb{N}$ and $\Phi(x_n(t)) \to 0$ as $n \to \infty$ for μ -a.e. $t \in \Omega$. Therefore, by the Lebesgue dominated convergence theorem,

$$I_{\Phi}(\lambda x_n)
ightarrow 0$$
 as $n
ightarrow \infty \ (orall \, \lambda > 0),$

which means that

$$\|x_n\|_{\Phi} \to 0 \text{ as } n \to \infty,$$

so the proof of the implication $(e) \Rightarrow (a)$ is finished.

Lozanovsky proved that any Banach lattice which is order continuous does not contain an isomorphic copy of ℓ^{∞} , so the implication $(a) \Rightarrow (b)$ is obvious.

Let us prove now that $(b) \Rightarrow (c)$. We know that $(b) \Rightarrow (e) \Rightarrow (a)$. Therefore, $I_{\Phi}(\lambda x) < \infty$ for any $\lambda > 0$ and any $x \in L^{\Phi}$ whenever (b) holds. Since $I_{\Phi}(x) \leq ||x||_{\Phi}$ for any $x \in \overline{B_{\parallel,\parallel_{\Phi}}}$, so $B_{\parallel,\parallel_{\Phi}} \subseteq B_{m,\Phi}$. Let us take any $x \in B_{m,\Phi}$ and assume for the contrary that $x \notin B_{\parallel,\parallel_{\Phi}}$, that is, $||x||_{\Phi} = 1$. By $\Phi \in \Delta_2$, we know that $I_{\Phi}(2x) < \infty$. Let us define the function $f : [0, 2] \to \mathbb{R}_+$ by

$$f(\lambda) := I_{\Phi}(\lambda x).$$

We have by the assumptions that f(1) < 1 and $f(2) < \infty$. Since f is convex on [0, 2], we know that f is continuous on (0, 2), whence we deduce that $f(1 + \varepsilon) < 1$ for some $\varepsilon > 0$. This means that $I_{\Phi}((1 + \varepsilon)x) < 1$, that is, $\|(1 + \varepsilon)x\|_{\Phi} \leq 1$, whence $\|x\|_{\Phi} \leq \frac{1}{1+\varepsilon} < 1$, a contradiction, which shows that $x \in B_{\|.\|_{\Phi}}$, and the inclusion $B_{m,\Phi} \subseteq B_{\|.\|_{\Phi}}$ is proved.

Since the set $B_{\|.\|_{\Phi}}$ is open in the $\|.\|_{\Phi}$ -topology, so the implication $(c) \Rightarrow (d)$ is obvious.

Let us prove now that $(d) \Rightarrow (e)$ or, equivalently, that $\neg(e) \Rightarrow \neg(d)$. So assume that $\Phi \notin \Delta_2$ and let

$$x = \sup_{n} x_n = \sum_{n=1}^{\infty} x_n,$$

where $(x_n)_{n=1}^{\infty}$ is the sequence constructed in the proof of the implication $(b) \Rightarrow (e)$. Then, we have $l_{\Phi}(x) = \sum_{n=1}^{\infty} l_{\Phi}(x_n) < \sum_{n=1}^{\infty} 2^{-n} = 1$. Since $l_{\Phi}(\lambda x_n) = \infty$ for any $n \in \mathbb{N}$ and $\lambda > 1$, we also have that $l_{\Phi}(\lambda x) = \infty$ for any $\lambda > 1$.

We claim that $x \in \operatorname{Int} B_{m,\|.\|_{\Phi}}$ in the norm topology generated by the norm $\|.\|_{\Phi}$, which means that there is $\varepsilon > 0$ such that $x + \varepsilon B_{\|.\|_{\Phi}} \subseteq B_{m,\Phi}$. Since $\|x\|_{\Phi} = 1$, so $\frac{\varepsilon}{2}x \in \varepsilon B_{\|.\|_{\Phi}}$ and by $x + \varepsilon B_{\|.\|_{\Phi}} \subseteq B_{m,\Phi}$ it must be $x + \frac{\varepsilon}{2}x \in B_{m,\Phi}$, that is, $I_{\Phi}\left(\left(1 + \frac{\varepsilon}{2}\right)x\right) < 1$, which contradicts to the condition $I_{\Phi}(\lambda x) = \infty$ for any $\lambda > 1$. **Remark**. Let us note that $x \in Int(B_{m,\Phi})$ if and only if $I_{\Phi}(\lambda x) < \infty$ for some $\lambda > 1$.

Indeed. We have just proved that if $x \in B_{m,\Phi}$ and $I_{\Phi}(\lambda x) = \infty$ for any $\lambda > 1$, then $x \notin Int(B_{m,\Phi})$. However, if $x \in B_{m,\Phi}$ and $I_{\Phi}(\lambda x) < \infty$ for some $\lambda > 1$, then $I_{\Phi}(\alpha x) < 1$ for some $\alpha > 1$.

Really, the function $f(\beta) = I_{\Phi}(\beta x)$ is convex and finite on the interval $[0, \lambda]$. So, it is continuous on the interval $(0, \lambda)$. Since $I_{\Phi}(x) < 1$, by continuity of f on the interval $(0, \lambda)$ with $\lambda > 1$, there exists $\alpha > 1$ such that $f(\alpha) = I_{\Phi}(\alpha x) < 1$. Denoting $\varepsilon = 1 - \frac{1}{\alpha}$ and assuming that $y \in x + \varepsilon B_{\|\cdot\|_{\Phi}}$, we have that there exists $z \in B_{\|\cdot\|_{\Phi}}$ such that

$$y = x + \varepsilon z = \frac{1}{\alpha} (\alpha x) + \left(1 - \frac{1}{\alpha}\right) z,$$

whence

$$I_{\Phi}(y) \leqslant rac{1}{lpha} I_{\Phi}(lpha x) + \left(1 - rac{1}{lpha}\right) I_{\Phi}(z) < rac{1}{lpha} + \left(1 - rac{1}{lpha}\right) = 1.$$

This means that $y \in B_{m,\Phi}$. By the arbitrariness of $y \in x + \varepsilon B_{\|.\|_{\Phi}}$, we proved that $x + \varepsilon B_{\|.\|_{\Phi}} \subseteq B_{m,\Phi}$, which means that $x \in Int(B_{m,\Phi})$.

Let us note that we proved the following sequence of implications:

$$(b) \Rightarrow (e) \Rightarrow (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e),$$

so also the subsequence of implications:

$$(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a),$$

which finishes the proof of the equivalence of these conditions.

Thank you very much!

Henryk Hudzik