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Quadratic forms

Let k be a field, chark 6= 2, V a finitely dimensional vector spaces
over k .

A quadratic form is a function q : V ! k such that the
associated function bq : V ⇥ V ! k defined by

bq(u, v) =
1

2
(q(u + v)− q(u)− q(v))

is bilinear, and

q(av) = a2q(v), for a 2 k and v 2 V .

The pair (V , q) shall be called a quadratic space.

The dimension of the space V will be called the dimension of the
form q, dim q.



Isometry of quadratic forms

Two quadratic forms q1 and q2 are called isometric if for their
respective quadratic spaces (V1, q1) and (V2, q2) there is an
isomorphism of vector spaces φ : V1 ! V2 such that

q2(φ(v)) = q1(v) for v 2 V1.

Two isometric forms will be denoted by q1 ⇠= q2.



Diagonalizable forms

Let (V , q) be a quadratic space.

If B = {v1, . . . , vn} is a basis of V , then the matrix B = [bq(vi , vj)]
will be called the matrix of q with respect to the basis B.

If B1 and B2 are two different bases of V , and B1 and B2 two
different matrices of q in B1 and B2, respectively, then
B2 = PB1P

T for a nonsingular matrix P .

If chark 6= 2 then there exists a basis D where q has a diagonal
matrix D, that is, q is diagonalizable.

If (d1, . . . , dn) are the entries on the main diagonal of D, then the
form q will be identified with the tuple (d1, . . . , dn).



Value sets of quadratic forms

For a quadratic form q on V , the set of nonzero values of the form
q is denoted as Dk(q).

The elements in Dk(q) are said to be represented by q over k .

Since q(av) = a2q(v) for a 2 F , it follows that the set Dk(q)
consists of whole cosets of the multiplicative group k⇤ modulo the
subgroup k⇤2 of squares.

Hence, Dk(q) can be viewed as a subset of the group k⇤/k⇤2 of
square classes of k .



Dimension and determinant

For a quadratic space (V , q), the dimension of V is said to be the
dimension of the quadratic form q, written as dim q.

If B1 and B2 are two different bases of V , and B1 and B2 two
different matrices of q in B1 and B2, respectively, then, since
B2 = PB1P

T for a nonsingular matrix P , detB1 and detB2, if
nonzero, lie in the same coset (detB)k⇤2, which is said to be the
determinant of the form q, written as det q.

If detB = 0 for some basis B, we set det q = 0.

Forms with nonzero determinant are called nonsingular.

This is equivalent to the fact that the map V ! V ⇤ given by

v 7! bq(·, v)

is an isomorphism of V onto the dual space V ⇤.



Orthogonal direct sum

If (V1, q1) and (V2, q2) are quadratic spaces, then so is
(V1 ⊕ V2, q1 ? q2), where

(q1 ? q2)(v1, v2) = q1(v1) + q2(v2).

Direct orthogonal sum of nonsingular quadratic forms is
nonsingular.

If q1 = (a1, . . . , an) and q2 = (b1, . . . , bm) are diagonalized forms,
then

q1 ? q2 = (a1, . . . , an, b1, . . . , bm).

The very useful Witt cancellation theorem states that if q is
nonsingular and q ? q1 ⇠= q ? q2 ,then q1 ⇠= q2.



Tensor product

The tensor product V1 ⌦ V2 can be equipped with the structure of
a quadratic space (V1 ⌦ V2, q), where the associated bilinear form
bq equals the tensor product bq1 ⌦ bq2 . Hence

bq(v1 ⌦ v2, v
0

1 ⌦ v 02) = bq1(v1, v
0

1) · bq2(v2, v
0

2)

for all simple tensors v1 ⌦ v2, v
0

1 ⌦ v 02 in V1 ⌦ V2.

The form q is then called the tensor product of the quadratic
forms q1 and q2, written as q1 ⌦ q2.

Tensor product of nonsingular quadratic forms is nonsingular.

If q1 = (a1, . . . , an) and q2 = (b1, . . . , bm) are diagonalized forms,
then

q1 ⌦ q2 = (a1b1, . . . , a1bm, a2b1, . . . , a2bm, . . . , anb1, . . . , anbm).



Isotropic, anisotropic and hyperbolic forms
A quadratic form q is said to be isotropic if there exists a nonzero
vector v 2 V so that q(v) = 0.

A simple but fundamental example of a nonsingular isotropic form
is the hyperbolic plane. This is the two-dimensional form h with
diagonalization (1,−1) in some basis of the plane.

If a quadratic form q is isotropic, then it splits off a hyperbolic
plane h1, i.e.

q ⇠= h1 ? q1

for some quadratic form q1. Continuing with q1, we ultimately
obtain a decomposition

q ⇠= h1 ? . . . ? hi ? qa,

where h1, . . . , hi are hyperbolic planes and qa is anisotropic.

By Witt cancellation, the form qa, called the anisotropic part of
q, is unique up to isometry, and also, the number i (called the
Witt index of q) is unique.

If qa = 0, the form q is said to be hyperbolic.



Pfister forms

A quadratic form (1, a), a 2 k⇤, is called one-fold Pfister form,

and an n-fold tensor product (1, a1)⌦ . . .⌦ (1, an) of one-fold
Pfister form is called an n-fold Pfister form.

It is an important property of Pfister forms that if a Pfister form is
isotropic, then it is necessarily hyperbolic.

Another fundamental property is that for a Pfister form q, the
value set Dk(q) is a group under multiplication.



Level of a field

Recall that for a ring A, the level s(A) is the smallest natural
number n such that −1 2 A is a sum of n squares in A or 1 if −1
is not a sum of squares in A.

The level of a nonformally real field (i.e. such that −1 is a sum of
squares) is always a power of two.

This was proved by Pfister as a simple consequence of the fact
that for a Pfister form q, the value set Dk(q) is a group under
multiplication.

Indeed, assume that k is a nonreal field with s = s(k) and let
2n  s < 2n+1.

Then −1 = A+ B , where A is a sum of 2n and B a sum of less
than 2n squares in k .

By the group property, it follows that −1 = (1 + B)/A is a sum of
2n squares in k , and so s = 2n.



Similarity of quadratic forms

Two quadratic forms q and g over k are said to be similar (or
Witt equivalent), written as q ⇠ g , if their anisotropic parts are
isometric, qa ⇠= ga.

An easy observation is that for quadratic forms q and g over k :

dim q = dim g and q ⇠ g ) q ⇠= g .

For a nonsingular quadratic form q over k , we write hqi for the
class of quadratic forms similar to q.

This is the Witt class of q.



Group rings
Recall the construction of a group ring.

Let G be a group, written multiplicatively, and let R be a ring.

The group ring of G over R , which we will denote by R[G ], is the
set of mappings f : G ! R of finite support, where the product αf
of a scalar α 2 R and a vector (or mapping) f is defined as the
vector

x 7! α · f (x),

and the sum of two vectors f and g is defined as the vector

x 7! f (x) + g(x).

To turn the additive group R[G ] into a ring, we define the product
of f and g to be the vector

x 7!
X

uv=x

f (u)g(v) =
X

u2G

f (u)g(u−1x).

The summation is legitimate because f and g are of finite support,
and the ring axioms are readily verified.



Witt ring
Witt classes of nonsingular quadratic forms over k with addition
and multiplication induced by direct orthogonal sum and tensor
product form a commutative ring called the Witt ring of the field
k and denoted as W (k).

The Witt ring has the following description in terms of generators
and relations.

Consider the integral group ring Z[k⇤/k⇤2] of the group of square
classes of the field k .

Then
W (k) = Z[k⇤/k⇤2]/J,

where J is the ideal in the group ring Z[k⇤/k⇤2] generated by the
set,

{[a] + [b]− [c]− [d ] : (a, b) ⇠= (c , d)} [ {[1] + [−1]}.

Here [a] denotes the sqare class of a 2 k⇤.

This is a straightforward consequence of the Witt theorem on
chain equivalence of quadratic forms



Dimension index and discriminant

For a Witt class hqi, we define the dimension-index

ehqi = dim q( mod 2) 2 Z/2Z

and the discriminant

dhqi = (−1)
1
2
n(n−1) det q 2 k⇤/k⇤2,

where n = dim q.

These are well-defined invariants of the similarity class.

Moreover,
e : W (k) ! Z/2Z

is a ring epimorphism.

Its kernel consists of the Witt classes hqi with even-dimensional q
and is said to be the fundamental ideal of the Witt ring W (k),
written as I (k).



Powers of fundamental ideal

Further,
d : W (k) ! k⇤/k⇤2

is a well-defined map, but it fails to be a homomorphism of the
additive group W (k) (for instance, take k = R).

However, if we restrict the discriminant map to the fundamental
ideal I (k), we obtain a surjective group homomorphism

d : I (k) ! k⇤/k⇤2

of the additive group I (k) onto the group of square classes.

Interestingly enough, the kernel of this homomorphism equals
I 2(k), the additive group of the square of the fundamental ideal.

This prompts looking at higher powers I n(k) of the fundamental
ideal.



An elementary observation is that I n(k) is generated as an Abelian
group by the Witt classes of all n-fold Pfister forms over k . Much
deeper and difficult to prove is the following theorem known as the
Hauptsatz:

Theorem (Arason-Pfister Hauptsatz)

For a positive-dimensional anisotropic quadratic form q over a field

k, if hqi 2 I n(k), then dim q ≥ 2n.

As a consequence, we get the intersection property in the Witt ring
W (k) of the field k :

1\

n=0

I n(k) = 0.



Minimal prime ideals and orderings

Recall that a prime ideal p of a commutative ring R is said to be a
minimal prime ideal over an ideal I if it is minimal among all
prime ideals containing I .

Note that we do not exclude I even if it is a prime ideal.

A prime ideal is said to be a minimal prime ideal if it is a minimal
prime ideal over the zero ideal.

The set of all minimal prime ideals of R will be denoted by
MinSpec(R).

An ordering of the field k is a subset P ⇢ k such that

1. P + P ⇢ P

2. P · P ⇢ P

3. P \ −P = {0}

4. P [ −P = k

We can think of P as of the set of all non-negative elements with
respect to a certain ordering relation.



Prime ideals in Witt rings

Theorem (Harrison, Lorenz, Leicht)

1. If the Witt ring W (k) has a prime ideal p 6= I (k), then the

field k is formally real and the set

P = {a 2 k⇤ : h1,−ai 2 p}

defines an ordering of the field k.

2. Let k be a formally real field and let P be an ordering of k.

Let p0 be the ideal of the Witt ring W (k) generated by the set

{h1,−ai 2 W (k) : a 2 P}.

Then p0 is a minimal prime ideal of the Witt ring W (k).
Moreover, p0 ⇢ I (k) and p0 6= I (k).

Hence, MinSpecW (k) = {I (k)} when the field k is nonreal, and
MinSpecW (k) contains at least one nonmaximal minimal prime
ideal when the field k is formally real.



Signatures

Each ordering P of a formally real field k gives rise to a signature
homomorphism

sgnP : W (k) ! Z

sending the class hqi to the signature of the form q for the
ordering P .

The map

σ : X (k) ! MinSpecW (k),P 7! ker sgnP

is a bijective correspondence between the set X (k) of all orderings
of the field k and the minimal prime ideals of the Witt ring W (k).

The set X (k) can be given the induced Zariski topology from the
prime spectrum and this turns X (k) into a Boolean space
(compact, Hausdorff, and totally disconnected).



Nilradical and torsion

For a nilpotent element x 2 W (k), we obviously have e(x) = 0
and hence NilW (k) ⇢ I (k).

When k is non-formally real field, we actually have
NilW (k) = I (k).

When k is formally real, we observe that nilpotent elements in
W (k) have zero signatures at every ordering of k , and so the
nilradical NilW (k) is contained in the intersection of the kernels of
all signature homomorphisms.

Since the latter are all minimal prime ideals in W (k), their
intersection actually equals the nilradical NilW (k).



For a nonreal field k of level s, the unit element h1i 2 W (k) has
finite order 2s in the additive group W (k) and so 2sW (k) = 0.

This is an immediate consequence of the theory of Pfister forms.

Thus, W (k) is torsion group and every element is two-primary
torsion.

When k is formally real, torsion elements have zero signatures at
all orderings of the field, so it follows that TorsW (k) ⇢ NilW (k).

A deeper result says that, in fact, for every formally real field k ,

TorsW (k) = NilW (k).



This is a consequence of the local–global principle for torsion
elements of Witt rings first proved by Pfister:

Theorem (Pfister local-global principle)

Let k be a formally real field and let q be an anisotropic quadratic

form over k. For every ordering P of the field k, choose a real

closure kP inducing the ordering P on k. The following statements

are equivalent.

1. hqi is a torsion element of the Witt ring W (k).

2. hqikP = 0 in the Witt ring W (kP), for every ordering P of the

field k.

3. sgnPhqi = 0 for all orderings P of the field k.

Moreover, every torsion element in W(F ) is two-primary torsion.



Pythagorean fields
A field k is said to be Pythagorean when every sum of squares of
nonzero elements of k is a square of a nonzero element in k .

Thus, a Pythagorean field is automatically formally real.

For all fields k except for Pythagorean fields, the set ZD(W (k)) of
zero divisors of the Witt ring W (k) coincides with the ideal I (k).

And for a Pythagorean field k , an element of the Witt ring of k is
a zero divisor in W (k) if and only if it lies in a minimal prime ideal
of the ring W (k).

Hence for a Pythagorean field F ,

ZD(W (F )) =
[

{ker sgnP : P 2 X (k)}.

The following theorem gives an important characterization of
Pythagorean fields in terms of their Witt rings.

Theorem
For a formally real field k,

k is Pythagorean , TorsW (k) = 0 , NilW (k) = 0.



Classification of quadratic forms over Pythagorean

fields

The above theorem implies a solution of the classification problem
for quadratic forms over Pythagorean fields.

If q and g are nonsingular quadratic forms over a Pythagorean field
k , then q ⇠= g if and only if dim q = dim g and sgnPq = sgnPg for
every ordering P of the field k .



Connections with K-theory and group
cohomology
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Quaternion algebras

Recall that a central simple algebra over a field k is a
finite-dimensional associative k-algebra A, which is a simple ring

(i.e. a non-zero ring that has no two-sided ideal besides the zero
ideal and itself), and for which the center is exactly k .

A quaternion algebra over a field k is a central simple algebra A

over k that has dimension 4 over k .

Every quaternion algebra becomes the matrix algebra by extending
scalars, i.e. for a suitable field extension F of k , A⊗k F is
isomorphic to the 2× 2 matrix algebra over F .

When the coefficient field k does not have characteristic 2, every
quaternion algebra over k can be described as a 4-dimensional
k-vector space with basis {1, i , j , k}, with the following
multiplication rules: i2 = a, j2 = b, ij = k , ji = −k , where a and b

are any given nonzero elements of k called structure constants.

Thus the quaternion algebra over k with structure constants shall

be denoted by
⇣

a,b
k

⌘

.



A quaternion algebra
⇣

a,b
k

⌘

is either a division algebra or

isomorphic to the matrix algebra of 2× 2 matrices over k , in which
case it is termed split.

The norm form

N(t + xi + yj + zk) = t2 − ax2 − by2 + abz2

defines a structure of division algebra if and only if the norm is an
anisotropic quadratic form.

The conic C (a, b) defined by

ax2 + by2 = z2

has a point (x , y , z) with coordinates in k in the split case.



Hasse algebra

For a nonsingular diagonal quadratic form q = (a1, . . . , an) with
the entries ai in a field k of characteristic 6= 2, we define the

Hasse algebra H(q) of the form q as the following tensor product
of quaternion algebras:

H(q) =
O

1≤i≤j≤n

⇣ai , aj
k

⌘

.

If q = (a1, . . . , an) and g = (b1, . . . , bn) are equivalent quadratic
forms, then H(q) ⇠= H(g).

In other words, the Hasse algebra of a quadratic form q is uniquely
determined up to algebra isomorphism and is an equivalence
invariant.



Opposite algebra
Let A be an arbitrary k-algebra.

We associate with A a new k-algebra, the opposite algebra Aop,
defined as follows: as a vector space the new algebra is identical
with A, and a new multiplication is defined by

a ? b = b · a, for all a, b ∈ A.

The centers of A and Aop coincide.

Hence A is a central k-algebra if and only if Aop is a central
k-algebra.

It is also obvious that every ideal I in the algebra A is also an ideal
in the algebra Aop and conversely.

Hence the opposite algebra of a central simple algebra is itself a
central simple algebra.

Theorem
Let A be a central simple algebra of dimesion n. Then

A⊗ Aop ∼= Mn(k)



Observe that for every quaternion algebra A there is an algebra
isomorphism:

A ∼= Aop.

Indeed, for a quaternion algebra A =
⇣

a,b
k

⌘

described as a

4-dimensional k-vector space with basis {1, i , j , k} and the
following multiplication rules: i2 = a, j2 = b, ij = k , ji = −k ,
consider the conjugation operation c : A → A

c(p) = c(x01 + x1i + x2j + x3k) = p = x01− x1i − x2j − x3k .

It can be easily seen to be an automorphism of the k-vector space
A.

Moreover

c(pq) = pq = q · p = p ? q = c(p) ? c(q).



Brauer group of a field
Two finite-dimensional k-algebras A and B are said to be similar,

written A ∼ B , if there are integers n and m such that

Mn(k)⊗ A ∼= Mm(k)⊗ B .

This is an equivalence relation whose equivalence classes will be
denoted by [A], which is compatible with tensor product.

Denote by Br(k) the set of all equivalence classes of all central
simple algebras over k .

It is made into an Abelian group by defining the product of two
similarity classes [A], [B] ∈ Br(k) as follows:

[A] · [B] = [A⊗ B].

The neutral element is the similarity class of the field k , which is
equal to all matrix algebras, i. e. [k] = [Mn(k)], for all positive
integers n.

The inverse element of the class [A] is the class of the opposite
algebra [Aop].



If A is a quaternion algebra, then [A]−1 = [A], or, in other words,
[A]2 = 1 in the Brauer group.

Recall that a quaternion algebra A is either a division algebra or is
isomorphic to the matrix algebra M2(k).

For a division quaternion algebra A the class [A] has order 2 in
Br(k).

On the other hand, if A ∼= M2(k), then [A] = 1 in Br(k).

For the quaternion algebra A =
⇣

a,b
k

⌘

we use the following

simplified notation for the similarity class [A]:

[A] = [a, b]k .



We will write Br2(k) for the subset of elements of order ≤ 2 in the
Brauer group Br(k).

Since Br(k) is an Abelian group, it follows that Br2(k) is a
subgroup of Br(k).

All quaternion algebra classes belong to Br2(k).

By commutativity of the group, also the products of quaternion
algebra classes belong to Br2(k).

This turns our attention to the subgroup Quat(k) of Brauer group
Br(k) generated by all quaternion algebra classes.

We thus have:
Quat(k) ⊂ Br2(k) ⊂ Br(k).

It is a deep theorem proved in 1981 by Merkurjev (to be discussed
later) that actually Quat(k) = Br2(k) for every field k .



Hasse invariant

For a nonsingular quadratic form q = (a1, . . . , an) over a field k of
characteristic 6= 2, the Hasse invariant h(q) of the form q is
defined to be the similarity class of the Hasse algebra H(q) of the
form q in the Brauer group of the field k :

h(q) = [H(q)] =
Y

1≤i≤j≤n

[ai , aj ]k 2 Br(k).

Theorem (Classification theorem for quadratic forms of
dimension  3)

Let q and g be nonsingular quadratic forms over a field k of

characteristic 6= 2 and let dim q  3 and dim g  3. Then, we have

q ⇠= g , dim q = dim g , det q = det g , h(q) = h(g).



Witt invariant
The Hasse invariant, like the determinant, is an invariant for
equivalence but not for similarity of quadratic forms.

However, as in the case of the determinant, one can correct this by
multiplying the Hasse invariant with a suitable factor.

This works in all dimensions, but we shall restrict attention to
even-dimensional forms.

We define

w(q) = h(q) · [−1,−1]n(n+1)/2, where dim q = 2n.

It turns out that the new function is a similarity invariant on the
set of even-dimensional forms with discriminant 1 2 k∗/k∗2 and
this set is precisely I 2(k).

Hence for hqi 2 I 2(k), we set w(hqi) = w(q) 2 Br(k), and call it
the Witt invariant of the form q, and of the class hqi 2 I 2(k).

Thus w(q) =

(

h(q) · [−1,−1], when 2n ⌘ 2, 4 mod 8,

h(q), when 2n ⌘ 0, 6 mod 8.
.



Notice that w(q) ∈ Quat(k).
Since

w(x ,−ax ,−bx , abx) = w(1,−a,−b, ab) = [a, b],

w((1,−a)⊗ (1,−b)⊗ (1,−c)) = 1,

forall x , a, b, c ∈ k∗, it easily follows that the map
w : I 2(k) → Quat(k) is a group epimorphism and

I 3(k) ⊂ kerw .

It has been of central importance for quadratic form theory
whether actually I 3(F ) = kerw .

This was proved for various classes of fields k including local and
global fields and fields of transcendence degree ≤ 1 over a real
closed field.

The question whether I 3(k) = kerw was resolved by Merkurjev in
1981 as a part of an even more spectacular result discussed below.



Grothendieck group of a commutative monoid

Let M be a commutative monoid.

To construct the Grothendieck group one forms the Cartesian
product

M ×M

and we say that (m1,m2) is equivalent to (n1, n2) if, for some
element k of M,

m1 + n2 + k = m2 + n1 + k .

It is easy to check that the addition operation defined
coordinate-wise is compatible with the equivalence relation.

The set of all equivalence classes with induced addition forms a
group.

The identity element is now any element of the form (m,m), and
the inverse of (m1,m2) is (m2,m1).



K0

Let R be a ring.

The functor K0 takes a ring R to the Grothendieck group of the
set of isomorphism classes of its finitely generated projective
modules, regarded as a monoid under direct sum.

Note that projective modules over a field k are simply vector
spaces and K0(k) is isomorphic to Z, by dimension.



K1

The infinite general linear group is the direct limit of the
inclusions GLn(R) ! GLn+1(R) as the upper left block matrix.

It is denoted by GL(R) and can be interpreted as invertible infinite
matrices which differ from the identity matrix in only finitely many
places.

Hyman Bass provided the following definition of K1(R): it is the
abelianization of the infinite general linear group:

K1(R) = GL(R)/[GL(R),GL(R)]

The commutator subgroup agrees with the group generated by
elementary matrices E (R) = [GL(R),GL(R)], by Whitehead’s
lemma.



For a commutative ring R one can define a determinant
det : GL(R) ! R∗ to the group of units of R , which vanishes on
E (R) and thus descends to a map det:

K1(R) ! R∗.

As E (R) C SL(R), one can also define the special Whitehead
group SK1(R) = SL(R)/E (R).

The determinant map splits via the map

R∗ ! GL1(R) ! K1(R)

(unit in the upper left corner), and hence is onto, and has the
special Whitehead group as kernel, yielding the split short exact
sequence:

1 ! SK1(R) ! K1(R) ! R∗ ! 1,

which is a quotient of the usual split short exact sequence defining
the special linear group, namely

1 ! SL(R) ! GL(R) ! R∗ ! 1.



The determinant is split by including the group of units
R∗ = GL1(R) into the general linear group GL(R), so K1(R) splits
as the direct sum of the group of units and the special Whitehead
group:

K1(R) ∼= R∗
⊕ SK1(R).

When R is a Euclidean domain (e.g. a field, or the integers)
SK1(R) vanishes, and the determinant map is an isomorphism
from K1(R) to R∗.

This is false in general for PIDs, thus providing one of the rare
mathematical features of Euclidean domains that do not generalize
to all PIDs.



Steinberg group
For a given ring R the easiest way to define the Steinberg group is
via generators and relations.

The unstable Steinberg group of order r over R , Str (R), is
defined by the generators xij(λ), 1 ≤ i 6= j ≤ r , λ ∈ R , subject to
the Steinberg relations:

xij(λ)xij(µ) = xij(λ+ µ)

[xij(λ), xjk(µ)] = xik(λµ) for i 6= k

[xij(λ), xkl(µ)] = 1 for i 6= l , j 6= k

The stable Steinberg group, St(R), is the direct limit of the
system Str (R) ! Str+1(R).

Mapping xij(λ) 7! eij(λ) yields a group homomorphism
φ : St(R) ! GL(R), where epq(λ) = I + apq(λ), I is the identity
matrix, apq(λ) is the matrix with λ in the (p, q) entry and zeros
elsewhere, and p 6= q.

As the elementary matrices generate the commutator subgroup,
this map is onto the commutator subgroup.



Chain and cochain complexes

A chain complex (A•, d•) is a sequence of abelian groups or
modules . . . ,A2,A1,A0,A−1,A−2, . . . connected by
homomorphisms (called boundary operators) dn : An ! An−1,
such that the composition of any two consecutive maps is zero:

dn ◦ dn+1 = 0 for all n.

They are usually written out as:

· · · ! An+1
dn+1
−−! An

dn−! An−1
dn−1
−−−! An−2 ! · · ·

d2−! A1

d1−! A0
d0−! A

−1
d
−1

−−! A
−2

d
−2

−−! · · ·



A variant on the concept of chain complex is that of cochain
complex.

A cochain complex (A•, d•) is a sequence of abelian groups or
modules . . . ,A−2,A−1,A0,A1,A2, . . . connected by
homomorphisms dn : An ! An+1 such that the composition of any
two consecutive maps is zero:

dn+1dn = 0 for all n.

This is usually written as

· · · ! A−2 d−2

−−→ A−1 d−1

−−→ A0 d0

−→ A1

d1

−→ A2
→ · · · → An−1 dn−1

−−−→ An dn

−→ An+1
→ · · · .

The index n in either An or An is referred to as the degree (or
dimension).

There is a natural notion of a morphism between chain complexes
called a chain map.

Given two complexes M∗ and N∗, a chain map between the two is
a series of homomorphisms from Mi to Ni such that the entire
diagram involving the boundary maps of M∗ and N∗ commutes.



Group cohomology and homology
Let G be a finite group.

A G -module is an abelian group M together with a group action of
G on M, with every element of G acting as an automorphism of M.

In the sequel we will write G multiplicatively and M additively.

For n ≥ 0, let Cn(G ,M) be the group of all functions Gn ! M.

This is an abelian group; its elements are called the n-cochains.

The coboundary homomorphisms dn : Cn(G ,M) ! Cn+1(G ,M)
are defined as

(dn
ϕ) (g1, . . . , gn+1)

= g1 · ϕ(g2, . . . , gn+1)

+

nX

i=1

(−1)iϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ (−1)n+1
ϕ(g1, . . . , gn)

The crucial thing to check here is dn+1 ◦ dn = 0, thus we have a
cochain complex.



For n ≥ 0, define the group of n-cocycles as:

Zn(G ,M) = ker(dn)

and the group of n-coboundaries as

(

B0(G ,M) = 0

Bn(G ,M) = im(dn−1), n ≥ 1

and the n-th cohomology group as:

Hn(G ,M) = Zn(G ,M)/Bn(G ,M).

The n-th homology groups Hn(G ,M) can be defined dually via
chain complexes.



K2

The right definition of K2 was given by John Milnor.

It can be defined in three equivalent ways as:

1. the center of the Steinberg group St(R), or

2. the kernel of the map φ : St(R) ! GL(R), or

3. the Schur multiplier of the group of elementary matrices,
that is the second homology group H2(E (R),Z).

Matsumoto’s theorem states that for a field k , the second K-group
is given by

K2(k) = k× ⊗Z k×/ha⊗ (1− a) | a 6= 0, 1i.



Tensor algebra
Let V be a vector space over a field k .

For any nonnegative integer k , we define the k-th tensor power of
V to be the tensor product of V with itself k times:

T kV = V⊗k = V ⊗ V ⊗ · · ·⊗ V .

We then construct T (V ) as the direct sum of T kV for k 2 N:

T (V ) =

∞M

k=0

T kV = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · .

The multiplication in T (V ) is determined by the canonical
isomorphism

T kV ⊗ T `V → T k+`V

given by the tensor product, which is then extended by linearity to
all of T (V ).

This multiplication rule implies that the tensor algebra T (V ) is
naturally a graded algebra with T kV serving as the graded
k-subspace.



Milnor K-theory

The calculation of K2 of a field k led Milnor to the following ad
hoc definition of ”higher” K -groups by considering the quotient of
the tensor algebra of the multiplicative group F× by the two-sided
ideal, generated by the a⊗ (1− a), for a 6= 0, 1:

KM
∗
(F ) := T ∗F×/(a⊗ (1− a)),

and then defining n-th Milnor K -groups Kn as graded n−subspaces
of the above quotient.

For n = 0, 1, 2 these coincide with Quillen’s K -groups of a field,
but for n ≥ 3 they differ in general.

We define the symbol {a1, . . . , an} as the image of a1 ⊗ · · ·⊗ an.



Brauer group revisited
Consider the Milnor K-theory group K2(k) and its factor group,
the elementary Abelian two-group

k2(k) = K2(k)/2K2(k).

One shows that k2(k) is generated by the cosets of symbols {a, b}
with a, b ∈ k∗.

The correspondence {a, b} 7! [a, b] induces a group
homomorphism

h : k2(k) ! Br2(k).

Moreover the correspondence {a, b} 7! h1,−a,−b, abi induces a
group homomorphism

s : k2(k) ! I 2(k)/I 3(k),

and the Witt invariant induces a homomorphism

e2 : I
2(k)/I 3(k) ! Quat(k) ⇢ Br2(k).



These homomorphisms yield the commutative diagram

k2(k)

s

yyrr
rr
rr
rr
rr

h

$$H
HH

HH
HH

HH

I 2(k)/I 3(k)
e2

// Br2(k)

It was proved by Milnor that s is an isomorphism.

Theorem (Merkurjev, 1981)

The homomorphism h is an isomorphism for all fields k of

characteristic 6= 2.

It follows that the homomorphism e2 is also an isomorphism and
consequently I 3(k) = kerw .

Thus, we get a complete characterization of quadratic forms in
I 3(k): these are even dimensional forms with trivial discriminant
and trivial Witt invariant.



Merkurjev’s proof that h : k2(k) ! Br2(k) is an isomorphism
depended on a result of Suslin on the quadratic norm residue
symbol available at that time only through deep results in Quillen’s
K-theory.

New proofs were given subsequently by Arason, Wadsworth, and
Merkurjev and they do not depend on Quillen’s K-theory.



Milnor’s conjecture

Consider the Milnor K-theory groups Kn(k) and its factor groups:

kn(k) = Kn(k)/2Kn(k),

and the cohomology groups

Hn(k) = Hn(Gal(k/k),Z/2Z),

where k denotes a separable closure of k .

Milnor defined homomorphisms

sn : kn(k) ! I n(k)/I n+1(k)

induced by the map sending the pure symbol {a1, . . . , an} 2 Kn(k)
onto the Witt class of the Pfister form
(1,−a1)⊗ . . .⊗ (1,−an) 2 I n(k).

Since I n(k) is additively generated by all n-fold Pfister forms, every
sn is surjective, and Milnor proved that s1 and s2 are bijective.



He also defined homomorphisms

hn : kn(k) ! Hn(k)

induced by the map sending the pure symbol {a1, . . . , an} 2 Kn(k)
onto the cup product (a1) [ . . . [ (an) 2 Hn(k).

For n = 0, 1, 2, the groups Hn(k) can be identified with Z/2Z,
k∗/k∗2, Br2(k).

Assuming Merkurjev’s theorem, dimension index, discriminant, and
Witt invariant can be viewed as surjective group homomorphisms

en : I n(k) ! Hn(k)

satisfying ker en = I n+1(k).

Hence in these cases, we have isomorphisms

en : I n(k)/I n+1(k) ! Hn(k).

It was an open problem whether such isomorphisms exist for n ≥ 3.

In 1975, Arason proved the existence of the group homomorphism
e3, and in 1989 Jacob and Rost and independently Szyjewski
proved the existence of e4.



The homomorphisms sn, hn, and the supposed maps en combine
into the diagram

kn(k)

sn

xxqq
qq
qq
qq
qq hn

##
H
H
H
H
H
H
H
H
H

I n(k)/I n+1(k)
en

// Hn(k)

The Milnor conjecture asserts that sn and hn are isomorphisms for
all n and all fields k of characteristic not 2.

Thus, the difficult and, in fact, intractable question in quadratic
form theory about the existence of the invariants en has been
transferred to K-theory and cohomology theory.

The bijectivity of hn for all n was proved by Voevodsky in 1996
and the bijectivity of sn shortly thereafter by Orlov, Vishik and
Voevodsky.



Equivalence of quadratic forms

The class of fields for which classical invariants (i. e. dimension,
determinant, Hasse invariant, and the total signature) classify
quadratic forms is characterized as follows:

Theorem (Elman, Lam, 1974)

Quadratic forms over a field k are classified by their dimension,

determinant, Hasse invariant, and total signature if and only if the

ideal I 3(k) of the Witt ring W (k) is torsion-free.

When the field k is nonreal, the Witt ring W (k) is the torsion so
that torsion-freeness of I 3(k) is to be interpreted as I 3(k) = 0.

The above theorem was proved before Merkurjev’s theorem.

Using Merkurjev’s theorem, the proof would become much easier.

Voevodsky’s theorem gives new possibilities for the classification of
quadratic forms.



When we want to check whether two quadratic forms q, g over a
field k of characteristic different from 2 are equivalent, we may
assume that dim q = dim g = n and consider the class
φ = hq ? −gi. Then q ⇠= g , φ = 0 2 W (k).

We shall write en for the composition
I n(k) ! I n(k)/I n+1(k) ! Hn(k) and view the values of the
homomorphisms en as invariants of quadratic forms in I n(k).

In order to compute en(φ), we need to know that φ 2 I n(k).

The latter is equivalent to requiring that e i (φ) = 0 for
i = 0, 1, . . . , n − 1.

Theorem (General classification theorem)

Let q, g be quadratic forms over a field k of characteristic different

from 2 and assume that dim q = dim g = n. Set φ = hq ? −gi,
and let j satisfy 2j  2n < 2j+1.

1. If e i (φ) 6= 0 for some i  j , then q and g are not equivalent

forms.

2. If e i (φ) = 0 for i = 1, . . . , j , then q and g are equivalent

forms.



Proof.
The class φ is even-dimensional and hence lies in I (k) and so
e0(φ) = 0.

If e1(φ) = 0, we have φ ∈ I 2(k), and if ` is the smallest index for
which e`(φ) 6= 0, then necessarily φ 6= 0 ∈ W (k) and so q and g

are inequivalent.

If e i (φ) = 0 for i = 1, . . . , j , then by Voevodsky’s theorem
φ ∈ I j+1(k).

However, dimφ = 2n < 2j+1 implies φ = 0 ∈ W (k) by the
Arason–Pfister Hauptsatz, but φ = 0 ∈ W (k) and dim q = dim g

imply q ∼= g .



Quotients of fundamental ideal revisited

For a quadratic form φ = (a1, . . . , an) over k set:

k(φ) = k(x2, . . . , xn)

0

@

s

−
a2x

2
2 + . . .+ anx2

a1

1

A .

Moreover, let Iφ(k) denote the ideal in W (k) generated by all the
h1,−ti, where t lies in D(φ).
Orlov, Vishik and Voevodsky proved the following:

Theorem
Let ! be an anisotropic m-fold Pfister form over k and denote by

L(!) its class in km(k). Then the kernel of kM
∗
(k) ! kM

∗
(k(!)) is

k∗(k)L(!), and the annihilator of L(!) in kM
∗
(k) is generated by

the {t}, where t runs through the non-zero elements in k

represented by !.



This combined with the isomorphisms kn(k) ! I n(k)/I n+1(k)
yields:

Theorem
Let ω be an anisotropic m-fold Pfister form over k and let n be a

positive integer. Then:

1. The kernel of the natural morphism

I n+k(k)/I n+k+1(k) ! I n+k(k(ω))/I n+k+1(k(ω))

equals the image of I n(k)ω in I n+k(k)/I n+k+1(k).

2. The kernel of the morphism

I n(k)/I n+1(k) ! I n+k(k)/I n+k+1(k)

given by multiplication by ω equals the image of I n−1(k)Iω(k)
in I n(k)/I n+1(k).

Lam’s Open Problem B follows almost directly from part 2 of the
above theorem (Arason, Elman, Dickmann, Miraglia and others).



Units of Witt ring

Theorem

1. If the field k is nonreal, then U(W (k)) = 1 + I (k).

2. If k is formally real, then hqi 2 U(W (k)) if and only if

sgnPhqi = ±1 for all orderings P of k.

Finally, for any field k , 0 and 1 are the only idempotents of the
Witt ring W (k).



Counting Witts

Pawe l G ladki
(joint work with Murray Marshall)

Uniwersytet Śla̧ski
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If K is a field, let XK be the topological space of orderings in K .

Recall that the u-invariant u(K ) of a field is defined as

u(K ) = sup{dim q : q is an anisotropic torsion quadratic form over K},

where q is torsion if its Witt class is a torsion element in W (K ).

Grenier-Boley, Ho↵mann and Scheiderer have recently proven:

Theorem
Let K and L be two SAP fields such that u(K ), u(L)  2. Then
the following are equivalent:

1. There is a ring isomorphism W (K ) ⇠= W (L).

2. There is a homeomorphism XK
⇠= XL and a group

isomorphism σ :
P

K ∗2/K ∗2 ⇠=
P

L∗2/L∗2.

I N. Grenier-Boley, D. Ho↵mann, C. Scheiderer, Isomorphism criteria for

Witt rings of real fields, Forum Math. 25 (2013), 1–18.



In particular, the above theorem covers the case of Witt
equivalence of algebraic function fields of curves over R.

A very natural question to ask is what happens if we increase the
stability index by one, for example by considering algebraic
function fields of curves over Q?

This seems to be a difficult question in general, so let’s restrict
ourselves to considering function fields of conics over Q.

In this talk we shall count (some of the) non-isomorphic classes of
Witt rings of function fields of rational conics.



Recall that we have the following obvious implications:

Birational
isomorphism

of conics

)

Birational
equivalence

(isomorphism
of their

function fields)

)
Witt

equivalence
of their

function fields



Classes of birationally isomorphic rational conics

Theorem
Let f 2 Q[x , y ] be an irreducible polynomial of degree 2 and
consider the curve C : f (x , y) = 0 whose function field Q(C) is
formally real. Then C is birationally isomorphic either to

1. a curve whose function field is isomorphic to Q(x), or

2. two parallel lines with no rational points:

ax2 + c = 0, a 2 Q∗, c 2 Q,

or

3. an ellipse with no rational points:

ax2 + by2 + c = 0, a > 0, b > 0, c < 0.

I P. G ladki, M. Marshall. The pp conjecture for spaces of orderings of
rational conics. J. Algebra Appl. 6 (2007) 245–257.



The proof is absolutely elementary.
From a standard course in linear algebra we know that C is affine
isomorphic either to a curve of parabolic type

ax2 + y = 0, a 2 Q∗, (1)

or to a curve of parallel type

ax2 + c = 0, a 2 Q∗, c 2 Q, (2)

or to a curve of elliptic (hyperbolic) type

ax2 + by2 + c = 0, a, b 2 Q∗, c 2 Q. (3)



If C is affine isomorphic to the parabola (1), then its function field
Q(C) is a purely transcendental extension of Q of degree 1, for if
Q(C) ⇠= Q(x , y) where ax2 + y = 0, a 6= 0, then

Q(C) ⇠= Q(x , y) = Q(x ,−ax2) = Q(x).

Further, if C has a rational point, then it is affine isomorphic to a
parabola (1) or an ellipse (hyperbola) (3), for if a curve
ax2 + c = 0 has a rational point (q, r) then

ax2 + c = ax2 − aq2 = a(x − q)(x + q),

so that C is reducible – a contradiction.
The “degenerated” ellipse

ax2 + by2 = 0, a, b 2 Q∗. (4)

is birationally isomorphic to two parallel lines (2) without rational
points via the mapping

(x , y) 7! (
x

y
, 1).



For the “non-degenerated” ellipse

ax2 + by2 + c = 0, a, b, c 2 Q∗. (5)

with a rational point, Q(C) ⇠= Q(z) for a z transcendental over Q;
indeed, since aq2 + br2 + c = 0 for some rational point (q, r), then

ax2 − aq2 = br2 − by2.

Let z = x−q
y−r

.
Hence Q(z) ⇢ Q(x , y).



Conversely, we have:

az(x+q) = a
x − q

y − r
(x+q) =

ax2 − aq2

y − r
= −by2 − br2

y − r
= −b(y+r),

and after rearranging:

azx + by = −azq − br . (6)

On the other hand, the equation z = x−q
y−r

gives:

x − zy = q − zr . (7)



The determinant −az2 − b of the system of equations (6) and (7):

(

azx + by = −azq − br

x − zy = q − zr

is nonzero.

Indeed, if it was zero, then a(x − q)2 + b(y − r)2 = 0.

This implies that the irreducible polynomial ax2 + by2 + c divides
the polynomial a(x − q)2 + b(y − r)2 so, comparing coefficients,
they are equal.

Then, comparing coefficients some more, q = r = 0 and c = 0,
which contradicts c 6= 0. ⇤



Finally, after scaling and/or interchanging x and y (if necessary),
the “non-degenerate” ellipse (hyperbola) (5) clearly satisfies either:

a > 0, b > 0, c < 0, (elliptic type), (8)

or
a > 0, b < 0, c < 0, (hyperbolic type), (9)

but these are birationally isomorphic via

(x , y) 7! (
y

x
,

1

x
).



Classes of birationally equivalent rational conics

Set ⌦a,b := qf Ω[x ,y ]
(ax2+by2

−1)
, ⌦r := qf Ω[x ,y ]

(x2−r)
.

We assume always that a, b 2 ⌦∗ and r 2 ⌦∗\⌦∗2.
We write K ⇠=Ω L to indicate that the field extensions K , L of ⌦
are ⌦-isomorphic.



Proposition

For r , s 2 ⌦∗\⌦∗2, the following are equivalent:
(1) r ⌘ s mod ⌦∗2.
(2) ⌦(

p
r) ⇠=Ω ⌦(

p
s).

(3) ⌦r
⇠=Ω ⌦s .



Proof.
The equivalence of (1) and (2) is well-known.
For the equivalence of (2) and (3) use the fact that
⌦r = ⌦(

p
r)(x), the field of rational functions in one variable x

over the field ⌦(
p
r), and ⌦(

p
r) is the field of constants of ⌦r

over ⌦, i.e., the algebraic closure of ⌦ in ⌦r .



Proposition

The field of constants of ⌦a,b over ⌦ is equal to ⌦.

Observe that Proposition 9 implies ⌦a,b 6⇠=Ω ⌦r for a, b 2 ⌦ and
r 2 ⌦∗\⌦∗2.



Proof.
Clearly ⌦a,b = ⌦(x)(

q

1−ax2

b
).

Suppose f = f0 + f1

q

1−ax2

b
, f0, f1 2 ⌦(x), is algebraic over ⌦.

Then f = f0 − f1

q

1−ax2

b
is also algebraic over ⌦.

Consequently, f0 = (f + f )/2 and f 20 − f 21 (1−ax2

b
) = f f are

algebraic over ⌦.
It follows that f 21 (1−ax2

b
) is algebraic over ⌦, i.e., f1 = 0, and

f0 2 ⌦.



For a, b 2 ⌦∗, (a,bΩ ) denotes the quaternion algebra over ⌦, i.e.,
the 4-dimension central simple algebra over ⌦ generated by i , j
subject to i2 = a, j2 = b, ji = −ij .
We identify quaternion algebras over ⌦ which are isomorphic as
⌦-algebras, equivalently, are equal as elements of the Brauer group
of ⌦.



Proposition

The following are equivalent:
(1) (a,bΩ ) = 1 (i.e., (a,bΩ ) splits over ⌦).
(2) h1,−ai ⌦ h1,−bi ⇠ 0 over ⌦.
(3) 1 2 DΩha, bi.
(4) The conic ax2 + by2 = 1 has a rational point.
(5) ⌦a,b is purely transcendental over ⌦.



Proof.
The equivalence of (1), (2), (3) and (4) is well-known from
quadratic form theory.
If (p, q) is a rational point of ax2 + by2 = 1 then ⌦a,b = ⌦(z)
where z := y−q

x−p
.

Conversely, if ⌦a,b = ⌦(z) then, choosing f (z), g(z), h(z) 2 ⌦[z ]

so that x = f (z)
h(z) , y = g(z)

h(z) , and choosing r 2 ⌦ so that h(r) 6= 0,

one sees that ( f (r)
h(r) ,

g(r)
h(r) ) is a rational point of ax2 + by2 = 1.

Note: This argument fails if |⌦| < 1, but the conclusion continues
to hold even in this case, since |⌦| < 1 ) the quadratic form
ha, bi is ⌦-universal.



From the definition of ⌦a,b it is clear that 1 2 DΩa,b
ha, bi, so (a,bΩ )

splits over ⌦a,b.
Of course, 1 also splits over ⌦a,b (since it splits over ⌦).



Conversely one has the following:

Proposition (E. Witt)

The only quaternion algebras defined over ⌦ which split over ⌦a,b

are (a,bΩ ) and 1.

I E. Witt, Gegenbeispiel zum Normensatz. Math. Zeit. 39 (1934) 12–28.



Proposition (E. Witt)

The following are equivalent:
(1) (a,bΩ ) = ( c,dΩ ).
(2) ⌦a,b

⇠=Ω ⌦c,d .

Proof.
Then implication (1) ) (2) is Satz on page 464 in:

I E. Witt, Gegenbeispiel zum Normensatz. Math. Zeit. 39 (1934) 12–28.

The implication (2) ) (1) is immediate from the Proposition
11.



Classes of Witt equivalent function fields of rational

conics

The following is an ultra-classic:

Theorem
For K, L fields of characteristic 6= 2, the following are equivalent:
(1) W(K ) ⇠= W(L).
(2) There exists a group isomorphism α : K ∗/K ∗2 ! L∗/L∗2 such
that α(−1) = −1 and α(DK h1, ai) = DLh1, α(a)i for all
a 2 K ∗/K ∗2.

I D.K. Harrison, Witt rings. University of Kentucky Notes, Lexington,
Kentucky (1970).



Recall that the field of constants of ⌦a,b is equal to ⌦ and the field
of constants of ⌦r is equal to ⌦(

p
r).

In:

I P. Koprowski, Local-global principle for Witt equivalence of function fields
over global fields. Colloq. Math. 91 (2002) 293–302.

Koprowski proves the following:

Proposition

Let k and l be two global fields of characteristic 6= 2 and let K and
L be algebraic function fields with fields of constans k and l that
also have rational places. If K and L are Witt equivalent, then so
are k and l.

It follows that ⌦a,b 6⇠ ⌦r and if ⌦(
p
r) 6⇠ ⌦(

p
s) then ⌦r 6⇠ ⌦s .



In:

I K. Szymiczek, Witt equivalence of global fields. II. Relative quadratic
extensions. Trans. Amer. Math. Soc. 343 (1994) 277–303.

Szymiczek proves that every quadratic extension of Q is Witt
equivalent to Q(

p
r) for some r 2 {−1,±2,±7,±17}, and,

moreover, these 7 quadratic extensions of Q are not Witt
equivalent to each other.
It follows that for ⌦ = Q, the function fields ⌦r ,
r 2 {−1,±2,±7,±17}, are themselves not Witt equivalent.



We turn now to function fields of conics of the form ⌦a,b,
a, b 2 ⌦∗.
We continue to assume ⌦ = Q.
The conics x2 + y2 = 1 and 3x2 + 3y2 = 1 both have real points,
but the former has rational points whereas the latter does not.
In:

I M. Dickmann, M. Marshall, F. Miraglia. Lattice-ordered reduced special
groups. Ann. Pure Appl. Logic. 132 (2005) 27–49.

I P. G ladki, M. Marshall. The pp conjecture for spaces of orderings of
rational conics. J. Algebra Appl. 6 (2007) 245–257.

it is proven that the pp conjecture holds for the space of orderings
of ⌦1,1 but not for the space of orderings of ⌦3,3.
Since the space of orderings of a field is an invariant of its Witt
ring, this implies that ⌦1,1 6⇠ ⌦3,3.



The field ⌦−1,−1 is not formally real (−1 is a sum of two squares
in ⌦−1,−1) so ⌦−1,−1 cannot be Witt equivalent to ⌦1,1 or ⌦3,3.
Similarly, ⌦−1,−3 cannot be Witt equivalent to ⌦1,1 or ⌦3,3.
We claim that K := ⌦−1,−1 and L := ⌦−1,−3 are Witt inequivalent.
For suppose they are.
Then 1 2 DK h−1,−1i so 1 2 DLh−1,−1i, i.e., (−1,−1

Ω ) splits over
L.
Since (−1,−1

Ω ) 6= 1, Proposition 11 implies that (−1,−1
Ω ) = (−1,−3

Ω ),

i.e., (−1,3
Ω ) = 1, i.e., 3 2 DΩh1, 1i.

Of course, this is impossible.



Thus the 11 function fields

⌦−1,⌦2,⌦−2,⌦7,⌦−7,⌦17,⌦−17,⌦1,1,⌦3,3,⌦−1,−1,⌦−1,−3

over the field ⌦ = Q are pairwise Witt inequivalent.



Question: Are there more, or is this the complete set?



Conjecture: There are infinitely many Witt inequivalent function
fields of rational conics.


