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Abstract. The following report is an outline of author’s thesis problems as

well as his approach to them and results obtained so far. It has been prepared
as a part of the comprehensive examination that the author is to take.
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1. Introduction

1.1. Introductory remarks. The main purpose of this report is to present the
main streams of the research that the author has pursued over the last two years and
claim some of possible directions in which his work shall be continued. An outline
of his doctoral dissertation is sketched with the emphasis on what is expected
to be achieved before graduation. This section introduces the reader to areas of
mathematical interest of the autor and explains some of the problems which make
those fields worth investigating. The section is followed by a more detailed plan of
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the dissertation; a general notation used in the report is introduced. Chapters 2 -
6 provide a sketch of contents of four main chapters of the thesis. The exposition
here is by no means complete nor self-contained and obviously the final version of
the dissertation shall vary in many points, especially chapters 5 and 6 which, up
to date, contain only a plan of the work for the next year and communicate some
problems or difficulties that may occur.

The main area of the author’s research is in the algebraic theory of quadratic
forms and in the theory of spaces of orderings. The notion of spaces of orderings has
been introduced by M. Marshall in the 1970’s and provides an abstract framework
for studying orderings on fields and the reduced theory of quadratic forms over
fields. The latter one has been vigorously developing since the late 1960’s, when
first papers on the subject by Pfister, Brocker, Becker and Kopping ([14], [4], [2])
were published. Numerous monographs are devoted to the subject, [8] and [11]
being of frequent use. A structure of a space of orderings (X,G) is completely
determined by the group structure of G and the ternary relation a ∈ D(b, c) on G;
groups arising in this way are the reduced special groups (see [6] for a more general
discussion on that subject; the notation used here shall be explained in details in
next sections). We are interested in the elementary language of reduced special
groups LSG with ∼= as a relational symbol, · as a functional symbol, two constants
1 and −1, and usual logical symbols. We assume that the atomic formulae are
of the form either t1 = t2 for terms t1, t2 or (t1, t2) ∼= (t3, t4) for terms t1, . . . , t4.
Using this language we can develop the theory of special groups, for which spaces of
orderings serve as models. Traditionally we shall exchange the quaternary relation
∼= with the ternary one a ∈ D(b, c), according to the following rule:

a ∈ D(b, c) iff. (b, c) ∼= (a, abc).

Hence the atomic formulae can be (modulo some of the axioms) exchanged with
the ones of the form 1 ∈ D(a, b).

Our main interest is in positive-primitive (pp for short) formulae

∃v1, . . . , vnψ(v1, . . . , vn, C1, . . . , Ck),

where ψ(v1, . . . , vn, C1, . . . , Ck) is a finite conjunction of atoms

1 ∈ D(a
n∏
i=1

vεii , b
n∏
i=1

vδi
i ),

for εi, δi ∈ {0, 1}, v0 = 1, v1 = v and a, b being products of ±1 and a finite number
of Ci’s. The significance of formulae of that type in the theory of quadratic forms
has been pointed out in the fundamental paper [12]; also the main questions the
author tries to answer in his work have been posed there. Examples of such formulae
are ”two forms are isometric”, ”an element is represented by a form”, ”a form is
isotropic”. The following problem is known as the pp conjecture:

Open Problem: Is it true that every pp formula which holds in every finite
subspace of a space of orderings holds in the whole space?

In other words, the problem poses the question of the validity of a very general
and highly abstract ”local-global principle”. The answer to the Open Problem is
affirmative for all the examples of pp formulae mentioned above and many of its
generalizations, with Extended Isotropy Theorem being the deepest result (see [11],
[12]). It has been shown that the class of spaces to which the conjecture is true
contains spaces of orderings of finite chain length, spaces of stability index 1 (which
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includes spaces of orderings of curves over real closed fields) and is closed under
direct sum and group extension (see [12]). For a large class of pp formulae called
product-free and 1-related and for any space having finite stability index it is also
proved, that the answer to the Open Problem is ”yes” ([13]). However, it has always
seemed unlikely that the conjecture has a positive solution in general - no examples
have been known, though.

Both the space of orderings of a rational function field in two variables over a
real closed field and the space of orderings of the field Q(x) are of stability index
2 ([9], [10]). The former has very complicated real valuations, while the latter has
well-understood ones and it has been shown that the answer to the Open Problem
is affirmative for such space ([5]). This suggests looking at finite extensions of
Q(x). This is being done in the recent paper by M. Marshall and the author ([7]),
where spaces of orderings of function fields of conic sections over the field Q are
investigated. First counterexamples to the pp conjecture are given and, moreover,
all function fields of rational conic sections are classified with respect to the Open
Problem.

Negative answer to the Open Problem raises new, very interesting questions.
First of all, one can ask about the case of more complicated extensions of Q(x) -
the first example in the row are function fields of elliptic curves. The author wishes
to investigate that matter and has already made some progress, which shall be
explained later in details. Secondly, the solution of pp conjecture for conics seems
to provide an answer to another long-lasting question: is pp conjecture true for
the space of orderings of the field Q(x, y)? The answer is no, however the example
constructed using conics and some recently discovered model-theoretic results ([1])
is non-constructive. The author wishes to find new, ”elementary” proofs of the
theorems stated in [1]. A significant progress towards achieving those goals has been
already made - some partial results are discussed later in chapter 6, with theorem
stating that the class of spaces of orderings satisfying the pp conjecture is closed
under subspaces among them. The results published in the paper [1] should develop
into new methods of testing whether a given pp formula holds true in a space of
orderings; elementary and constructive proofs that the author wishes to find should
provide us with better understanding of the nature of some pp conjecture-related
problems.

1.2. Content of the thesis. The author wishes to organize his dissertation as
follows:

Chapter 1: Introduction.
Chapter 2: Spaces of orderings.

Section 1: Axioms for spaces of orderings. Axioms for spaces of order-
ings are introduced together with basic definitions used in the theory
of spaces of orderings, regarding quadratic forms, discriminants, signa-
tures, sets of elements represented by a form, isometries, Pfister forms
and Witt rings. Pfister’s Local-Global Principle is proved, Harrison
topology is introduced and various concepts of isometry are discussed
along with alternative sets of axioms. This section briefly outlines the
material covered in sections 2.1 - 2.3 in [11].

Section 2: Subspaces of spaces of orderings. The concept of a subspace
of a space of orderings is explained and the structure and basic proper-
ties of subspaces are discussed. This part complies with the material from
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section 2.4 in [11]. Next, relationships between valuations, valuation
rings, convex sets and orderings are presented. This part is based on the
material from chapter 2 in [8]. Finallly, the Baer-Krull construction of
a subspace of space of orderings containing orderings compatible with
a given valuation is given. This part refers to the material from chapter
7 in [15].

Section 3: Language LSG and axioms of special groups. Axioms for
(reduced) special groups are introduced and the relationship between
the theory of (reduced) special groups and the theory of spaces of
orderings is explained. Abstract logical and model-theoretical frame-
work using the language LSG is introduced. This section outlines the
material covered in chapter 1 of [6].

Chapter 3: The space of orderings of the field Q(X).
Section 1: Real spectra and specializations. The notion of orderings of

fields is extended to commutative rings: prime cones, residue fields,
real spectra and specializations are defined. Basic constructions in the
theory of real spectra are explained. Real spectra of coordinate rings
in the algebraic geometry are described in details. This section covers
the material contained in sections 7.1 - 7.2 in [3].

Section 2: Spaces of orderings of function fields. Fundamental geomet-
ric criterion for an element to be represented by a quadratic form in a
space of orderings of a function field is proved. This part is an expanded
version of section 3 of the paper [5].

Section 3: Orderings of the field Q(X). A detailed description of or-
derings of the field Q(X) is given. This is a direct application of the
theorems introduced in previous sections; a shortened version of this result
is given in the introduction to the paper [5].

Section 4: pp conjecture for the field Q(X). The pp conjecture is proved
in the case of the space of orderings of the field Q(X). This part is an
expanded version of section 4 of the paper [5].

Chapter 4: Spaces of orderings of rational conics.
Section 1: Coordinate rings and function fields of conics. Conic sections

are classified with respect to the structure of their coordinate rings.
This part is an expanded version of section 1 of the paper [7] by M.
Marshall and the author.

Section 2: Spaces of orderings of function fields of elliptic conics over
Q. The fundamental theorem stating that for a space of orderings of a
function field of an irreducible conic section of elliptic type without ra-
tional points the pp conjecture fails is proved. This part is an expanded
version of section 2 of the paper [7] by M. Marshall and the author.

Section 3: Spaces of orderings of function fields of two parallel lines over
Q. The fundamental theorem stating that for a space of orderings of
a function field of two parallel lines without rational points the pp
conjecture fails is proved. This part is an expanded version of section 3
of the paper [7] by M. Marshall and the author.

Chapter 5: Spaces of orderings of elliptic curves.
Section 1: Coordinate rings and function fields of elliptic curves. El-

liptic curves are to be classified with respect to the structure of their
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coordinate rings - at least partially. This problem seems to be far more
complicated than the case of conic sections. This work is yet to be done.
Some partial results are given later.

Section 2: Spaces of orderings of function fields of elliptic curves. De-
pending on the results to be achieved in the previous section, some
more counterexamples to the pp conjecture are expected to be given.
This work is yet to be done.

Chapter 6: Spaces of orderings of function fields in many variables.
Section 1: Testing pp formulas on subspaces of bounded cardinality.

Elementary proofs of the results contained in section 2.2 of [1] are to
be given. New methods of veryfying pp formulas in arbitrary spaces
of orderings are to be proved. This work is yet to be done.

Section 2: Spaces of orderings of function fields in many variables. The
fundamental theorem stating that for the space of orderings of the field
Q(x, y) the pp conjecture fails is to be proved. Further corollaries are
to be given. This work is yet to be done. Some partial results are given
later.

1.3. Notation. We shall use the standard notation for the fields and rings Q, R,
C, Z etc. For an integral domain D we shall always denote by (D) its field of
fractions; for any set S containing 0 shall denote by S∗ the set S \ {0}. If P is a
ring and R is its extension, we shall usually use small letters a, b, c, . . ., p, q, . . . to
denote ideals in P and capital letters A,B,C, . . ., P,Q, . . . for ideals in R. For an
ideal a of P we shall write ae for its extension in R and for an ideal A in R we shall
denote by Ac its contraction in P . While dealing with an algebraic curve C over a
field K, we shall denote by I(C) its ideal, by K[C] its coordinate ring and by K(C)
its field of rational functions

2. Spaces of orderings

2.1. Axioms for spaces of orderings. Let K be a field. Since we shall mostly
deal with real fields, we may assume for simplicity that K is of characteristic 6= 2.
We call a subset T of K a preordering if T + T ⊂ T , TT ⊂ T and K2 ⊂ T and a
subset P of K an ordering if P+P ⊂ P , PP ⊂ P , P ∪−P = K and P ∩−P = {0}.
Clearly every ordering is a preordering, but the converse is not true - however, using
Zorn’s Lemma, every preordering might be extended to an ordering. Moreover, a
slightly more subtle result could be proved by means of Zorn’s lemma, which is
frequently used in many proofs:

Lemma 1. If T is a preordering in a field K of characteristic 6= 2 and a ∈ K \ T ,
then there exists an ordering P of K extending T and such that a /∈ P .

Set of all orderings extending any given preordering T shall be denoted by XT :

XT = {P ⊂ K : T ⊂ P, P is an ordering }.
The simplest example of a preordering is the set of all sums of squares, denoted
by ΣK2. Clearly every preordering contains the set ΣK2, so that the set of all
orderings is the same as the set of all orderings extending the preordering ΣK2 -
we shall denote it simply by XK . For a given set S ⊂ K there always exists the
smallest preordering containing it, which we shall denote by ΣK2[S]. The set of all
orderings extending such preordering shall be denoted by XS .
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Fix a preordering T of K. Denote by GT the quotient group K∗/T ∗ of the
subgroup T ∗ = T \ {0} of the multiplicative group K∗. One checks that GT is
naturally identified with a subgroup of the function group {−1, 1}XT : the mapping
K∗ 3 a 7→ a ∈ {−1, 1}XT , where

a(P ) =
{

1, if a ∈ P
−1, if a /∈ P

is easily verified to be a homomorphism, whose kernel is equal to T ∗. Elements
of GT viewed as functions will be thus denoted by a. In the simplest case when
T = ΣK2 we shall write GK instead of GΣK2 ; also, if T = ΣK2[S], we will write
GS for GΣK2[S].

An n−tuple φ = (a1, . . . , an) of elements of GT will be called a quadratic form
of dimension dimφ = n. The product discφ =

∏n
i=1 ai ∈ GT shall be called the

discriminant of φ and the sum φ(P ) =
∑n
i=1 ai(P ) ∈ Z the signature of φ at

P . We say that an element b ∈ GT is represented by the form φ, if for some
t1, . . . , tn ∈ T b =

∑n
i=1 tiai. The set of all elements represented by φ shall be

denoted by D(φ). It is a matter of routine verification that D(φ) has the following
properties:

D(a) = {a} and b ∈ D(a1, . . . , an) ⇔ b ∈ D(a1, c) for c ∈ D(a2, . . . , an),

and also
D(a1, a2) = {b : b(P ) = a1(P ) ∨ b = a2(P ), P ∈ XT }.

Quite surprisingly, every element of D(φ) has a ,,transversal” representation; the
proof of the following lemma uses a nice arithmetic trick.

Lemma 2. b ∈ D(a1, . . . , an) if and only if b =
∑n
i=1 t

∗
i ai, for t∗i ∈ T ∗.

Proof. The ,,if” part is obvious; for the remaining part of the proof suppose that
b = t1a1 + . . .+ tnan for some ti ∈ T . We obviously have

a1 + . . .+ an
b

= r2 − s2, where r =
a1+...+an

b + 1
2

, s =
a1+...+an

b − 1
2

.

It follows that a1+...+an

b = (r2 + 1)− (s2 + 1) and hence

b(r2 + 1) = a1 + . . .+ an + b(s2 + 1) = a1 + . . .+ an + (t1a1 + . . .+ tnan)(s2 + 1),

which divided by r2 + 1 gives the desired representation. �

The above remarks lead us to the definition of a space of orderings. We shall
define it as a pair (X,G), where X is a nonempty set and G is a subgroup of the
function group {−1, 1}X containing the constant function −1 and satisfying certain
axioms. First of all, for x, y ∈ X:

x 6= y ⇒ ∃a∈Ga(x) 6= b(x).

X naturally embeds into the group χ(G) of characters of G via the monomorphism
X 3 x 7→ Φx ∈ χ(G), where G 3 a Φx7→ a(x) ∈ {−1, 1}. For a, b ∈ G we also define
the set D(a, b) = {c ∈ G : a(x) = c(x) ∨ b(x) = c(x), x ∈ X}. With those remarks
and notation we state the second axiom:

∀x∈χ(G)[x(−1) = −1 ∧ ∀a,b∈G(a, b ∈ kerx⇒ D(a, b) ⊂ kerx)] ⇒ x ∈ X
and the third one:

∀a1,a2,a3,b∈Gb ∈ D(a1, c) for c ∈ D(a2, a3) ⇒ b ∈ D(d, a3) for d ∈ D(a1, a2).



RESEARCH REPORT 7

Not surprisingly, the pair (XT , GT ) for any given preordering T of the field K
is a space of orderings, which could be easily checked. We develop the reduced
theory of quadratic forms for spaces of orderings. An n−tuple φ = (a1, . . . , an)
of elements of G shall be called a quadratic form of dimension dimφ = n.
The product discφ =

∏n
i=1 ai ∈ G shall be called its discriminant and the sum

φ(x) =
∑n
i=1 ai(x) ∈ Z its signature at x ∈ X. The set of elements represented

by a form is defined by induction; we have already defined it for binary forms, the
full definition is as follows:

D(a) = {a}; D(a, b) = {c ∈ G : a(x) = c(x) ∨ b(x) = c(x), x ∈ X};

D(a1, . . . , an) =
⋃

b∈D(a2,...,an)

D(a1, b).

We also define the addition and the multiplication of quadratic forms:

(a1, . . . , an)⊕ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm),

(a1, . . . , an)⊗ (b1, . . . , bm) = (a1b1, . . . , a1bm, . . . , anb1, . . . , anbm),
and the multiplication of a form by a scalar:

c(a1, . . . , an) = (ca1, . . . , can).

For simplicity we shall denote by k × φ the sum φ⊕ . . .⊕ φ︸ ︷︷ ︸
k

and by ((a1, . . . , an))

the n-fold Pfister form (1, a1)⊗ . . .⊗ (1, an). The following statements are easily
verified by induction:

Lemma 3. (1) D(a1, . . . , an) does not depend on the order of entries,
(2) D(cφ) = cD(φ),
(3) c ∈ D(φ1 ⊕ . . .⊕ φn) ⇔ c ∈ D(a1, . . . , an), ai ∈ D(φi),
(4) D(a1, . . . , an) is the smallest additively closed set containing a1, . . . , an,

i.e. a set with the following property:

∀a,b∈Ga, b ∈M ⇒ D(a, b) ∈M,

(5) D(k × φ) = D(φ).

Next, we define the isometry of quadratic forms. We proceed by recursion:

(a) ∼= (b) ⇔ a = b; (a1, a2) ∼= (b1, b2) ⇔ ∀x∈Xa1(x) + a2(x) = b1(x) + b2(x);

(a1, . . . , an) ∼= (b1, . . . , bn) ⇔ ∃a,b,c3,...,cn∈G(a2, . . . , an) ∼= (a, c3, . . . , cn)∧
∧(a1, a) ∼= (b1, b) ∧ (b2, . . . , bn) ∼= (b, c3, . . . , cn).

We list a few properties of this relation - they all follow by induction, however
sometimes proofs are quite lengthy and involve tedious computations, due to the
,,artificial” nature of the above definition (this is especially true while proving the
assertion (4)).

Lemma 4. (1) b ∈ D(a1, . . . , an) ⇔ ∃b2,...,bn(b, b2, . . . , bn) ∼= (a1, . . . , an),
(2) (a1, . . . , an) ∼= (aσ(1), . . . , aσ(n)) for every permutation σ ∈ S(n),
(3) if φ ∼= ψ then dimφ = dimψ, discφ = discψ, D(φ) = D(ψ), φ(x) = ψ(x)

for all x ∈ X and cφ ∼= cψ for all c ∈ G,
(4) ∼= is an equivalence relation,
(5) if φ ∼= φ′ and ψ ∼= ψ′, then φ⊕ ψ ∼= φ′ ⊕ ψ′ and φ⊗ ψ ∼= φ′ ⊗ ψ′,
(6) (Witt cancelation theorem) if φ ∼= φ′ and φ⊕ ψ ∼= φ′ ⊕ ψ′, then ψ ∼= ψ′.
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We call a pair (−a, a), a ∈ G, a hyperbolic form or a hyperbolic plane;
clearly (−a, a) ∼= (−1, 1) for a ∈ G. A form φ is isotropic if for some form ψ we
have φ ∼= (−1, 1) ⊕ ψ; otherwise it is anisotropic. Also, we say that a form φ is
universal, if D(φ) = G. Finally, we are in position to state the central definition in
the reduced theory of quadratic forms, the definition of the Witt ring of a space of
orderings. Two forms φ and ψ are said to be Witt equivalent (denoted φ sinψ) if
they are isometric modulo some hyperbolic planes, i.e. if for some integers k, l ∈ N
φ ⊕ k × (−1, 1) ∼= ψ ⊕ l × (−1, 1). It is easily verified that Witt equivalence is
indeed an equivalence relation and that we may introduce well-defined addition
and multiplication in the set of all Witt equivalence classes of a given space of
orderings by extending ⊕ and ⊗ to representatives of such classes. The set of all
Witt equivalence classes with such operations forms a ring, which is called the Witt
ring. The following lemma (whose proof is straightforward) explains relationships
between those definitions:

Lemma 5. (1) φ ∼= ψ ⇔ φ ∼ ψ ∧ dimφ = dimψ,
(2) φ is isotropic ⇔ φ ∼ ψ ∧ dimφ > dimψ for some ψ,
(3) φ is isotropic ⇔ φ is universal ⇔ D(φ) ∩ −D(φ) 6= ∅,
(4) φ is anisotropic ⇔ n× φ is anisotropic for every integer n ∈ N,
(5) if φ⊕ ψ is isotropic, then for some b ∈ G b ∈ D(φ) and −b ∈ D(ψ).

To show some of the methods and techniques frequently used in the discussed
theory, we shall prove the following important result.

Theorem 1 (Pfister’s local-global principle). φ ∼ ψ ⇔ ∀x∈Xφ(x) = ψ(x).

Proof. Once we show that φ ∼ 0 ⇔ ∀x∈Xφ(x) = 0, we are done:

φ ∼ ψ ⇔ φ⊕−ψ ∼ 0 ⇔ ∀x∈X(φ⊕−ψ)(x) = 0
⇔ ∀x∈Xφ(x)− ψ(x) = 0 ⇔ ∀x∈Xφ(x) = ψ(x).

The implication (⇒) is trivial: if φ ∼ 0, then:

φ⊕ (−1, 1)⊕ . . .⊕ (−1, 1) ∼= (−1, 1)⊕ . . .⊕ (−1, 1),

and, by Witt cancellation theorem, φ ∼= (−1, 1)⊕. . .⊕(−1, 1), so obviously φ(x) = 0
for all x ∈ X.

For (⇐) assume that for all x ∈ X φ(x) = 0 and suppose a contrario that φ � 0.
Without loss of generality we might assume that φ is anisotropic; if φ ∼= (−1, 1)⊕ψ
for some ψ, then clearly φ(x) = ψ(x) for all x ∈ X and φ ∼ ψ, so using Witt
cancelation theorem respectively many times we eventually arrive to an anisotropic
form. Observe, that φ ⊕ φ � 0 - otherwise φ ⊕ φ would be isotropic, so D(φ) =
D(φ ⊕ φ) = G and φ would be isotropic. Therefore (1, 1) ⊗ φ = φ ⊕ φ � 0 and
moreover (1, 1)⊗ (1, 1)⊗ φ = φ⊕ φ⊕ φ⊕ φ � 0, so that the multiplicative set:

{ψ : ψ ⊗ φ � 0}
is nonempty and contains (1, 1). By Zorn’s lemma we may choose the a maximal
such set S.

We claim that
∀a∈G(1, a) ∈ S ∨ (1,−a) ∈ S.

Suppose then that for some a ∈ G (1, a) /∈ S ∧ (1,−a) /∈ S. Since (1, a) ⊗ (1, a) =
(1, a, a, 1) = (1, 1) ⊗ (1, a) ∈ (1, a) ⊗ S, the smallest multiplicative set containing
S and (1, a) is of the form S ∪ S ⊗ (1, a). Thus we may pick ψ1 ∈ S such that
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(1, a) ⊗ ψ1 ⊗ φ ∼ 0 (by maximality of S). Similarly, we may choose ψ2 ∈ S such
that (1,−a)⊗ ψ2 ⊗ φ ∼ 0. Then:

[(1, a)⊕ (1,−a)]⊗ ψ1 ⊗ ψ2 ⊗ φ ∼ 0.

But (1, 1)⊕ (a,−a) = (1, 1) ∈ S, so above contradicts the definition of S.
Define the function χ : G→ {−1, 1} by:

χ(a) =
{

1, if (1, a) ∈ S,
−1, if (1,−a) ∈ S.

This function is well-defined. We shall see that it is a character of G. Indeed, fix
a, b ∈ G and let, say, χ(a) = χ(b) = 1, so that (1,−a) /∈ S and (1,−b) /∈ S. As
before we may pick ψ1, ψ2 ∈ S such that (1,−a)⊗ψ1⊗φ ∼ 0 and (1,−b)⊗ψ2⊗φ ∼ 0.
Thus ψ1 ⊗ phi ∼ aψ1 ⊗ φ and ψ2 ⊗ φ ∼ bψ2 ⊗ φ, so we get:

ψ1 ⊗ ψ2 ⊗ φ ∼ bψ2 ⊗ aψ1 ⊗ φ ∼ abψ1 ⊗ ψ2 ⊗ φ,

or, in other words, (1,−ab)⊗ψ1⊗ψ2⊗φ ∼ 0. Thus χ(ab) = 1. For different values
of χ(a), χ(b) we proceed in a similar way.

Next we shall show that

∀a,b∈Ga, b ∈ kerχ⇒ D(a, b) ⊂ kerχ.

Fix a, b ∈ kerχ and let c ∈ D(a, b). Then (1, a) ∈ S, (1, b) ∈ S and by comparison
of signatures (c, abc) ∼= (a, b). This gives:

(1,−a)⊗ (1,−b) ∼= (1,−a,−b, ab) ∼= (1,−c, ab,−cab) ∼= (1,−c)⊗ (1, ab).

As before we may choose ψ1, ψ2 ∈ G such that (1,−a)⊗ ψ1 ⊗ φ ∼ 0 and (1,−b)⊗
ψ2 ⊗ φ ∼ 0. Suppose that (1, c) /∈ S. Then (1, c) ∈ S and

0 ∼ (1,−a)⊗ (1,−b)⊗ ψ1 ⊗ ψ2 ⊗ φ ∼ (1,−c)⊗ (1, ab)⊗ ψ1 ⊗ ψ2 ⊗ φ,

which yields a contradiction.
By the second axiom of the theory of spaces of orderings, χ can be identified

with an element x of X such that for all a ∈ G χ(a) = a(x). We shall see that
φ(x) 6= 0. Let φ = (a1, . . . , an) and define ei = χ(ai), i ∈ {1, . . . , n}. Then clearly
(1, eiai) ∈ S for all i ∈ {1, . . . , n} and since ai(1, eiai) = (ai, ei) = ei(eiai, 1) we
have the following contradiction:

0 � (1, e1a1)⊗ (1, enan)⊗ (a1, . . . , an) =
= a1(1, e1a1)⊗ . . .⊗ (1, enan)⊕ . . .⊕ an(1, e1a1)⊗ . . .⊗ (1, enan) =
= e1(1, e1a1)⊗ . . .⊗ (1, enan)⊕ . . .⊕ en(1, e1a1)⊗ . . .⊗ (1, enan) =
= (1, e1a1)⊗ . . .⊗ (1, enan)⊗ (e1, . . . , en) ∼ 0

�

By the above theorem it follows immediately that

φ ∼= ψ ⇔ dimφ = dimψ ∧ ∀x∈Xφ(x) = ψ(x).

This new characterization of isometry enables us to define a new, equivalent to
the old, system of axioms for a space of orderings. Before we do that, we need to
introduce a topology in the group of characters of G. We define it as the weakest
topology such that the mappings fa : χ(G) → {−1, 1}, a ∈ G, given by

fa(χ) = χ(a)



10 PAWEL GLADKI

are continuous; as a topology in {−1, 1} we take the discrete topology. Therefore
the subbasis of our topology in χ(G) consists of sets of the forms

U(a) = {χ : χ(a) = 1} and V (a) = {χ : χ(a) = −1}.
Clearly if we embed the set X into χ(G) in the described before manner, this
topology induces a topology on X with subbasis consisting of sets of the form

U(a) = {x : a(x) = 1} and V (a) = {x : a(x) = −1};
since for every x ∈ X −1(x) = −1, we have V (a) = U(−a) and it suffices to
restrict ourselves to the sets of the form U(a), which turn to be clopen. The basis
of our topology is thus formed by the clopen sets U(a1, . . . , an) =

⋂n
i=1 U(ai). The

topology described above is often referred to as a Harrison topology. With those
introductory remarks we state the following theorem, whose proof is mainly based
on Pfister’s local-global pronciple:

Theorem 2. A pair (X,G) is a space of orderings if and only if:
(1) X is a nonempty set and G is a subgroup of {−1, 1}X containing the func-

tion constantly equal to −1 and such that

∀x,y∈Xx 6= y ⇒ ∃a∈G(a(x) 6= a(y)),

(2) the image of X in χ(G) under the embedding

X 3 x 7→ (G 3 a 7→ a(x) ∈ {−1, 1}) ∈ χ(G)

is closed with respect to the described above topology,
(3) if (a1, . . . , an) ∼= (b1, . . . , bm) means

n = m ∧ ∀x∈Xa1(x) + . . .+ an(x) = b1(x) + . . .+ bm(x)

and

D(a1, . . . , an) = {b ∈ G : ∃b2,...,bn∈G(b, b2, . . . , bn) ∼= (a1, . . . , an)},
then

a ∈ D(φ⊕ ψ) ⇔ a ∈ D(b, c) for b ∈ D(φ), c ∈ D(ψ).

2.2. Subspaces of spaces of orderings. For a given space of orderings (X,G)
we shall define a subspace as a pair (Y,G|Y ) consisting of a subset Y ⊂ X of the
form Y =

⋂
a∈S U(a) for some subset S ⊂ G and G|Y = {a|Y : a ∈ G}. We shall

be mostly interested in subspaces of spaces of the form (XK , GK) for some field K.
In this case it is not difficult to show that:

Lemma 6. Y is a subspace of (XK , GK) iff Y = XT for a preordering T .

Proof. It is evident that this condition is sufficent: just take (T \ {0})/(ΣK2)∗ as
the corresponding set S. To prove that the condition is also necessary, suppose that
Y ⊂ XK is such that Y =

⋂
a∈S U(a) for some S ⊂ GK . Define T = ΣK2[{a ∈ K :

a ∈ S}]; a routine verification proves that Y = XT . �

It is not immediate to show that a subspace of a space of orderings is a space
of orderings itself in general; however, in the case of subspaces of (XK , GK) it is
pretty straightforward: we use the alternate axioms for spaces of orderings and the
,,transversal” representation while proving (3).

Our special interest is in subspaces associated with valuations. Recall that a
Krull valuation of a field K with values in an ordered additive group G is a
mapping v : K → G ∪ {∞} such that:



RESEARCH REPORT 11

(1) v(a) = ∞ if and only if a = 0,
(2) v(ab) = v(a) + v(b) for all a, b ∈ K,
(3) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ K.

With a given valuation v we relate an associated valuation ring

Av = {a ∈ K : v(a) ≥ 0},

which indeed happens to be a valuation ring and hence a local ring. Its only
maximal ideal is of the form

Mv = {a ∈ K : v(a) > 0}

and its group of units of the form

Uv = {a ∈ K : v(a) = 0}.

Clearly the quotient ring Av/Mv is a field, which shall be denoted by Kv and called
a residue field of v.

Next, we say that a valuation v is compatible with the ordering P of K if

(a ∈ P \ {0} ∧ b− a ∈ P ) ⇔ v(a) ≥ v(b).

We also say that a symmetric set A (that is such that if a ∈ A then also −a ∈ A)
is convex with respect to an ordering P if

(a ∈ P ∧ b− a ∈ P ∧ b ∈ A) ⇒ a ∈ A.

It is easily checked that the following conditions are equivalent:
(1) P is compatible with v,
(2) Av is convex with respect to P ,
(3) Mv is convex with respect to P ,
(4) (a ∈ P ∧ a ∈Mv) ⇒ 1− a ∈ P \ {0}.

Denote by Xv the set of all orderings compatible to a given valuation v. We aim
to prove that this set gives rise to a subspace of (XK , GK).

First, we need to learn something more about relations between a valuation and
an ordering compatible with it. Say v : K → G ∪ {∞} is a valuation and P is an
ordering of K. Denote by Pv the set {a + Mv : a ∈ P} ⊂ Kv and by AP the set
{a ∈ K : n− a ∈ P ∧ n + a ∈ P for some n ≥ 1}. It is easy to check that AP is a
valuation ring with the only maximal ideal

MP = {a ∈ K :
1
n
− a ∈ P ∧ 1

n
+ a ∈ P for all n ≥ 1}.

We have the following ,,square of dependencies”:

Pv is an ordering of Kv
+3 Av ⊃ AP

��
P is compatible with v

KS

1 +Mv ⊂ Pks

Indeed, suppose that Pv is an ordering of Kv. Fix an a ∈ AP and let n ∈ N be
such that n − a, n + a ∈ P . Suppose that a /∈ Av. But then a−1 ∈ Av and thus
a−1 ∈Mv and hence na−1 ∈Mv. Without loss of generality we might assume that
a−1 ∈ P (otherwise take −a−1). Therefore na−1 − 1, na−1 + 1 ∈ P . This implies
−1 +Mv = na−1 − 1 +Mv ∈ Pv and 1 +Mv = na−1 + 1 +Mv ∈ Pv, but since Pv
is an ordering, 1 ∈Mv - a contradiction.
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Assume that Av ⊃ AP . We know that MP = AP \U(AP ), so if we fix an a ∈Mv,
this implies that a−1 /∈ Av, so a−1 /∈ AP . Then a ∈ AP and automatically a ∈MP ,
so we showed that Mv ⊂MP . In particular 1 +Mv ⊂ 1 +MP .

Now assume that 1+Mv ⊂ P . Fix a ∈ P such that a ∈Mv. Then also −a ∈Mv,
so 1− a ∈ 1 +Mv ⊂ P .

Finally, let us assume that P is compatible with v. We easily check that Pv is
closed under addition and multiplication, that contains all squares of Kv and that
Pv ∪−Pv = Kv. To show that Pv ∩−Pv = {0} assume that a+Mv,−a+Mv ∈ Pv.
Then a+Mv = a′+Mv and −a+Mv = a′′+Mv for a, a′′ ∈ P . Thus a′−a, a′′+a ∈
Mv. Without loss of generality we may assume that a ∈ P . Since a′′ + a ∈Mv and
a′′ + a ∈ P , (a′′ + a) − a = a′′ ∈ P , and because Mv is convex with respect to P ,
this implies a ∈Mv.

Now we can easily prove the following:

Theorem 3. Xv = XT , where T = ΣK2[1 +Mv]

Proof. Let P ∈ Xv. Then 1 + Mv ⊂ P and obviously ΣK2 ⊂ P , so P ∈ XT .
Conversely, if P ∈ XT , then 1 +Mv ⊂ P and P is compatible with v. �

Along with Lemma 6 this shows that (Xv, GK |Xv
) is a subspace of (XK , GK). For

simplicity, we shall writeGv instead ofGK |Xv
. The structure of the space (XK , GK)

is well-understood modulo the structure of valuations of K - the celebrated result
by Baer and Krull gives complete classification of all possible kinds of orderings of
K. We shall briefly outline main concepts of this theory.

For a given valuation v : K → G∪{∞} a semisection is a mapping s : G→ K∗

such that
(1) s(0) = 1,
(2) v(s(g)) = g,
(3) s(g1+g2)

s(g1)s(g2)
∈ (K∗)2.

The following two lemmas are the core of Baer-Krull construction:

Lemma 7. Let v : K → G ∪ {∞} be a nontrivial valuation whose residue field
Kv is formally real, let s : G → K∗ be a semisection for v. Then every ordering
P ∈ Xv induces a pair of mappings: a constant map φP : G/2G → XKv

and a
character σP : G/2G→ {−1, 1} by the following means:

∀g∈GσP (g + 2G)s(g) ∈ P
and

∀g∈G∀b∈Uv
(b+Mv ∈ φP (g + 2G)) ⇔ bs(g)σP (g + 2G) ∈ P.

Lemma 8. Let v : K → G ∪ {∞} be a nontrivial valuation whose residue field
Kv is formally real, let s : G → K∗ be a semisection for v. Then every pair of a
constant function φ : G/2G → XKv

and a character σ : G/2G → {−1, 1} induces
an ordering φσ defined by the following condition:

∀a∈K∗(a ∈ φσ) ⇔ (
a

s(v(a))
σ(v(a) + 2G) +Mv ∈ φ(v(a) + 2G)).

The Baer-Krull theorem states that the above two lemmas establish a bijective
correspondence between the setXv and the cartesian product of constant maps from
G/2G to orderings of the residue field and characters of G/2G, that is (φP )σP =
P and (φφσ , σφσ ) = (φ, σ). We need to clasify all orderings of K. Generally
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speaking all orderings might be divided into two groups - Archimedean ones and
non-Archimedean ones. An ordering P is said to be Archimedean if the following
Archimedean certanity holds:

∀a∈K∃n∈Nn− a ∈ P.

It is well-known from the theory of real fields, that every formally real field with
Archimedean ordering is order-embeddable into the field of real numbers and thus
every Archimedean ordering comes from such embedding. On the other hand it
is not hard to prove (using Baer-Krull theorem) that if an ordering is compatible
with a valuation then it cannot be Archimedean. Thus we arrived to the following:

Theorem 4. The space of orderings (XK , GK) is a union of the Archimedean
orderings coming from embeddings of K info R and closed subspaces (Xv, Gv) of
orderings compatible with nontrivial valuations whose residue fields are formally
real. The structure of (Xv, Gv) is completely described by Baer-Krull theorem.

2.3. Language LSG and axioms of special groups. In order to make our dis-
cussion more formal and to present some ideas in more precise manner we shall
build a first order language and a theory in such language which will serve as an
abstract framework for studying the theory of spaces of orderings. The language
LSG consists of a quaternary relation symbol ∼= called isometry, a functional symbol
· called multiplication and two constans −1 and 1. We use the usual set of logical
symbols: ¬,→, a set of individual variables V , the quantifier ∀ and the identity
symbol =. We define terms T by induction as the smallest set containing individual
variables and constans and closed under functional symbol. For terms t1, . . . , t4 ∈ T
we define atomic formulas to be either of the form t1 = t2 or (t1, t2) ∼= (t3, t4).

In this language we build the theory of special groups as the set of following
sentences:

(1) · is a group multiplication,
(2) ∀aa · a = 1,
(3) ∼= is an equivalence relation,
(4) ∀a,b(a, b) ∼= (b, a),
(5) ∀a(a,−a) ∼= (−1, 1),
(6) ∀a,b,c,d(a, b) ∼= (c, d) → a · b = c · d,
(7) ∀a,b,c,d(a, b) ∼= (c, d) → (a,−c) ∼= (−b, d),
(8) ∀a,b,c,d(a, b) ∼= (c, d) → ∀x(x · a, x · b) ∼= (x · c, x · d),
(9) ∀a(a, a) ∼= (1, 1) ↔ a = 1,

(10) denoting by:

(a1, a2, a3) ∼=3 (b1, b2, b3) ⇔
⇔ ∃a,b,c3(a1, a) ∼= (b1, b) ∧ (a2, a3) ∼= (a, c3) ∧ (b2, b3) ∼= (b, c3),

∼=3 is transitive.

Since we are more used to the value set notation than to the isometry relation, we
shall introduce the following abbreviation:

a ∈ D(b, c) ⇔ (b, c) ∼= (a, abc).

In view of the above axioms it is easy to check that

(a, b) ∼= (c, d) ⇔ ab = cd ∧ ac ∈ D(1, cd)
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and thus we may interchange the quaternary relation (a, b) ∼= (c, d) with the ternary
one a ∈ D(b, c). This, together with some other axioms, enables us to use formulae
1 ∈ D(a, b) as atomic formulae.

Clearly any model of the theory of special groups shall be called a special group.
Since the language of special groups differs from the language of groups, we shall
denote special groups by (G,∼= −1). An SG-morphism is a group homomorphism
f between two special groups (G,∼=,−1) and (H,∼=,−1) such that f(−1) = −1 and

∀a,b,c,d∈G((a, b) ∼= (c, d) ⇒ (f(a), f(b)) ∼= (f(c), f(d))).

For a special group (G,∼=,−1) denote by XG the set of all SG-morphisms of G into
Z2. It is not hard to show, using the alternate set of axioms of spaces of orderings,
that (XG, G) is a space of orderings. Moreover, for a space of orderings (X,G),
(G,∼=,−1) is a special group (with the usual meaning of ∼= and −1). To be more
precise, the two correspondences:

(G,∼=,−1) 7→ (XG, G)

and
(X,G) 7→ (G,∼=,−1)

are reciprocal to each other.

3. The space of orderings of the field Q(X)

3.1. Real spectra and specializations. We shall slightly generalize the notion of
orderings and spaces of orderings to the ring case. Suppose that A is a commutative
ring with identity. A subset α ⊂ A is called a prime cone if α+α ⊂ α, α ·α ⊂ α,
A2 ⊂ α, −1 /∈ α and for ab ∈ α either a ∈ α or −b ∈ α. The intersection α ∩ −α
of ,,positive” and ,,negative” part of a prime cone shall be denoted by suppα and
called the support of α. It is easy to verify that a support of a prime cone is a
real prime ideal (recall that an ideal I is called real if a2

1 + . . . + a2
n ∈ I implies

that ai ∈ I, i ∈ {1, . . . , n}). Thus the quotient ring A/suppα is a domain and
we can build its field of fractions, which shall be denoted by K(suppα) and called
the residue field of A at suppα. This field can be endowed with an ordering P
defined as follows: first, we define which elements of A/suppα are ,,positive”:

a+ suppα ∈ P ⇔ a ∈ α
and then extend the ordering P to the ordering P of K(suppα):

a+ suppα
b+ suppα

∈ P ⇔ (a+ suppα)(b+ suppα) ∈ P.

Finally, we embed the field K(suppα) into its real closure K(α). An element
a + suppα ∈ A/suppα ↪→ K(suppα) ↪→ K(α) will be simply denoted by a(α)
(regardles of whether it belongs to A/suppα or K(suppα) or K(α)). To sum up,
we have the following sequence of mappings and embeddings:

A
onto−→ A/suppα ↪→ K(suppα) = (A/suppα) ↪→ K(α).

The real spectrum of a ring A is just the set of all prime cones - we denote it
by SpecA. We introduce a Harrison topology in SpecA by base clopen sets

U(a1, . . . , an) = {α ∈ SpecA : a1(α) > 0, . . . , an(α) > 0}
(the inequalities above are meant to be with respect to the unique ordering in
K(α)). Clearly in the case when A = K is a field, SpecK = XK . Another



RESEARCH REPORT 15

important example of real spectra comes from algebraic geometry: if V ⊂ Rn is an
algebraic set, define its associated ideal to be

I(V ) = {f ∈ R[X1, . . . , Xn] : ∀x∈V f(x) = 0}

and consider the ring P(V ) = R[X1, . . . , Xn]/I(V ) of polynomial functions on V .
The following mapping turns out to be an injective homeomorphism (with respect
to the euclidean topology of V and the Harrison topology of SpecP(V )):

V 3 x 7→ αx = {f ∈ P(V ) : f(x) ≥ 0} ∈ SpecP(V ).

Finally, it is not hard to prove, that for two cones α and β is a spectrum SpecA
the following four conditions are equivalent:

(1) α ⊂ β,
(2) a(α) ≥ 0 ⇒ a(β) ≥ 0,
(3) a(α) > 0 ⇒ a(β) > 0,
(4) β ∈ cl ({α})

If any (and hence all) of the above conditions are satisfied, we say that β is a
specialization of α.

3.2. Spaces of orderings of function fields. Let K be a formally real field,
uniquely ordered. Let p be a prime ideal of the ring K[X1, . . . , Xn] and consider
the field F = (K[X1, . . . , Xn]/p). We assume that F is formally real; it follows in
particular, that the ideal p is real. Let R be a real closure of K and let V denote
the zero set of p in Rn:

V = {(a1, . . . , an) ∈ Rn : f(a1, . . . , an) = 0, f ∈ p}.

We want to learn something about the nature of the space (XF , GF ). To be
more precise, we need to give a geometric meaning to the formula f ∈ D(g, h) in
a subspace (XT , GT ) of (XF , GF ), where T is a finitely generated preordering. In
order to do that we first prove two important lemmas, which establish a ,,traingle of
dependencies” that might be viewed as a generalization of Hilbert’s 17th problem:
for fixed f, g1, . . . , gs ∈ F

f ∈ D((g1, . . . , gs)) ks +3 ∀P∈XF
(g1, . . . , gs ∈ P ⇒ f ∈ P )

∀W - irreducible

component of V

of maximal dim

∀a∈regW
(g1(a) > 0, . . . , gs(a) > 0
⇒ f(a) ≥ 0)

'/

go VVVVVVVVVVVVVV

VVVVVVVVVVVVVV ��

KS

Lemma 9. f ∈ D((g1, . . . , gs)) ⇔ ∀P∈XF
(g1, . . . , gs ∈ P ⇒ f ∈ P )

Proof. If f is represented by the Pfister form ((g1, . . . , gs)), we may just take a
,,transversal” representation:

f = σ1 + σ2

∑
gi + σ3

∑
gigj + . . .+ σk

∑
g1 · . . . · gs, σi ∈ ΣF 2

and observe that if g1, . . . , gs ∈ P , then also f ∈ P .
Conversely, suppose that for all P ∈ XF if g1, . . . , gs ∈ P then also f ∈ P .

Observe that
((g1, . . . , gs)) ∼= f((g1, . . . , gs));
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indeed, both forms are of the same dimension and comparing signatures we see,
that if all g1, . . . , gs ∈ P for some ordering P , then the signatures of both the left
and the right hand sides are equal to 2s. If for some i ∈ {1, . . . , s} gi /∈ P for an
ordering P , then both signatures are equal to 0. Now, since 1 ∈ D((g1, . . . , gs)), it
is evident that f ∈ D((g1, . . . , gs)). �

The second equivalence is much more difficult to prove and we need some pre-
liminaries. We shall write X = (X1, . . . , Xn) for simplicity.

Lemma 10. Every α ∈ SpecK[X] extends uniquely to β ∈ SpecR[X] such that
suppα = K[X] ∩ suppβ.

Proof. In order to show that the desired cone exists, consider the sequence:

(K,Q) ι1−→ (K[X], α) κ−→ (K[X]/suppα, P )
q−→

q−→ ((K[X]/suppα), P ) r−→ (K(α),ΣK(α)2),

where Q is the unique ordering of K. It obviously gives a rise to the embedding:

K
r◦q◦κ◦ι1
↪→ K(α)

and since Q is unique, we must have Q = (r ◦ q ◦ κ ◦ ι1)−1(ΣK(α)2). On the other
hand there exists an embedding (K,Q)

ι2
↪→ (R,ΣR2), so there also exists an order-

preserving K-embedding Φ : R → K(α). This embedding can be easily extended
to the embedding Φ̃ : R[X] → K(α) by setting:

Φ̃(Σai1...inX
i1
1 . . . Xin

n ) = ΣΦ(ai1...in)r ◦ q ◦ κ(Xi1
1 . . . Xin

n ).

Now we define β to be Φ̃−1(ΣK(α)2) and without difficulty we verify that α =
β ∩K[X].

Now suppose that we have two cones β1 and β2 such that suppα = K[X] ∩
suppβi. Consider the following two diagrams, i = {1, 2}:

K[X] κ //

κi ''OOOOOOOOOOOO K[X]/suppα
φ //

Φi

��

(K[X]/suppα)

Φ̃i

��
(R[X]/suppβi, Pi)

φi // ((R[X]/suppβi), P̃i)� _

ri

��
(R[X](βi),ΣR[X](βi)2)

In the above diagrams κ is onto and kerκi = kerκ, so there exists exactly one
injective homomorphism Φi : K[X]/suppα → R[X]/suppβi per each diagram.
Those Φi’s are easily extendable to Φ̃i : (K[X]/suppα) → (R[X]/suppβi) given by

Φ̃i(
f

g
) =

Φi(f)
Φi(g)

.

It is a matter of routine verification that Φ̃i’s are well-defined homomorphism,
so they have to be embeddings. It is also easy to check that the extensions
(K[X]/suppα) ⊂ (R[X]/suppβi) are algebraic, so both R[X](βi) are algebraic clo-
sures of (K[X]/suppα) and there is an order-preserving (K[X]/suppα)-isomorphism
Ψ : R[X](β1) → R[X](β2) This, in turn, gives β1 = β2. �
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Now we are in position to prove the second fundamental lemma:

Lemma 11. ∀P∈XF
(g1, . . . , gs ∈ P ⇒ f ∈ P ) if and only if for every irreducible

component W of V of maximal dimension and for every regular point a ∈ W
(g1(a) > 0, . . . , gs(a) > 0 ⇒ f(a) ≥ 0).

Proof. (⇐) Let P ∈ XF and define α ∈ SpecK[X] by

f ∈ α⇔ f + p ∈ P,
where p = suppα. Let β ∈ SpecR[X] be the unique cone extending α such that
suppα = K[X] ∩ suppβ. Consider the set

W = Z(suppβ) = {(a1, . . . , an) ∈ Rn : f(a1, . . . , an) = 0, f ∈ suppβ}.
This is clearly an irreducible component of V . We shall see that W is of maximal
dimension.

Irreducible sets of V are in bijective correspondence with prime ideals, so suppose
that there exists a prime ideal q B R[X] such that Z(q) ⊂ Z(suppα) = V . Then
clearly q ⊃ suppα and q ∩K[X] ⊃ suppα. Consider the diagram

K[X] κ

onto
//

κ ''NNNNNNNNNNN
K[X]/suppα

Φ

���
�
�

K[X]/q ∩K[X]

Clearly kerκ = q ∩ K[X] ⊃ suppα = kerκ and κ is onto, so there exists exactly
one epimorphism Φ : K[X]/suppα→ K[X]/q ∩K[X]. Now, if p1 ( p2 ( . . . ( pk
is a chain of prime ideals in K[X]/q ∩K[X] of maximal length, then

Φ−1(p1) ⊂ Φ−1(p2) ⊂ . . . ⊂ Φ−1(p)k;

in fact all those inclusions are strong, that is, we shall replace ⊂ with (. This shows
that dimK[X]/suppα ≥ dimK[X]/q∩K[X]. Using the alternate definition of the
dimension we see, that since (K[X]/suppα) ⊂ (R[X]/suppβ) is algebraic (which
we have already observed in the proof of the previous lemma), dimK[X]/suppα =
dimR[X]/suppβ = dimW . Similarly, (K[X]/q ∩K[X]) ⊂ (R[X]/q) is algebraic,
so

dimK[X]/q ∩K[X] = dimR[X]/q = dimZ(q).
The statement ,,a is a regular point of W such that if g1(a) > 0, . . . , gs(a) > 0,

then f(a) ≥ 0” is expressible as the following formula in the field R:

fi(a) = 0 ∧ o[ ∂fi
∂Xj

(a)] = n− dimW ∧ gi(a) > 0 ⇒ f(a) ≥ 0.

By Tarski transfer principle, this implies that the following formula holds in the
reald closure of the field (R[X]/suppβ):

fi(β) = 0 ∧ o[ ∂fi
∂Xj

(β)] = n− dimW ∧ gi(β) > 0 ⇒ f(β) ≥ 0.

The first part of the formula, that is fi(β) = 0∧o[ ∂fi

∂Xj
(β)] = n−dimW , is trivially

satisfied; gi(β) > 0 obviously implies gi(α) > 0, which in turns translates as gi ∈ P
- similarly for f(β) ≥ 0.

(⇒) Let W be an irreducible component of V of maximal dimension and let q =
Z(W ). q is a real prime ideal: since Z(q) = Z(I(W )) = W ⊂ V = Z(I(V )), by the
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real nullstelensatz we have q = I(Z(q)) ⊃ I(Z(I(V ))) ⊃ I(V ) ⊃ p. In particular
q ∩K[X] ⊃ p - we want to show that those two ideals are indeed equal. Observe
that since (K[X]/p) ⊂ (R[X]/I(V )) is algebraic, dimK[X]/p = dimR[X]/I(V ) =
dimV - similarly dimK[X]/q ∩K[X] = dimW . Consider the diagram

K[X] κ

onto
//

κ ''NNNNNNNNNNN
K[X]/q

Φ

���
�
�

K[X]/q ∩K[X]

in which kerκ = q ∩K[X] ⊃ p = kerκ and κ is onto, so that there exists a unique
epimorphism Φ : K[X]/p → K[X]/q∩K[X]. Suppose that Φ is not injective; then
a chain of prime ideals of K[X]/q∩K[X] of maximal length would give a rise to a
longer chain of prime ideals in K[X]/p, which is impossible. Thus Φ is one-to-one
and that implies q ∩K[X] = p.

Now let a ∈ W be a regular point. This point induces a prime cone βa =
{f + q : f(a) ≥ 0} ∈ Spec (R[X]/q). βa is a specialization of a prime cone, whose
support is of dimension dimW . As before we chheck that suppβa = q - and define
βa ∈ SpecR[X] by

f ∈ βa ⇔ f + q ∈ βa.

Clearly suppβa = q. Finally, let α ∈ SpecK[X] be the cone induced by βa; we
see that suppα = p. If we define P ∈ XF in a natural way as an extension of α,
we can easily check that the assumption g1(a) > 0, . . . , gs(a) > 0 translates into
g1 + p ∈ P, . . . , gs + p ∈ P , which, in turn, gives f + p ∈ P and f(a) ≥ 0. �

As a special case when s = 1 we obtain a concrete geometric meaning of the
atomic formula f ∈ D(1, g). By use of a very simple quadratic form-algebra this
can be generalized as follows:

Theorem 5. Let T be a preordering generated by g1, . . . , gs, let f, g, h ∈ F . Then
f ∈ D(g, h) in the space (XT , GT ) iff for every irreducible component of V of
maximal dimension and for every regular point a ∈ W if g1(a) > 0, . . . , gs(a) > 0,
then f(a)g(a) ≥ 0 or f(a)h(a) ≥ 0.

3.3. Orderings of the field Q(X). We shall describe all orderings of the field
Q(X), starting from the description of its valuations and then applying Baer-Krull
theorem. The following result is well-known:

Theorem 6. Let P be the set of all irreducible polynomials in the ring Q[X]. For
an arbitrary π ∈ P define the mapping vX,π : Q(X) → R ∪ {∞} by:

vX,π(a) =
{
∞ if a = 0,
nπ if a = u

∏
ρ∈P Q(X)nρ , nρ ∈ Z, u ∈ U(Q[X]).

Define also the function vX,∞ : Q(X) → R ∪ {∞} by:

vX,∞(a) =

{
∞, if a = 0,
deg g − deg f, if a = f(X)

g(X) , f, g ∈ Q[X] \ {0}.

We set deg∞ = 1.
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(1) The mapping
π 7→ vX,π

establishes a bijection between the set P∪{∞} and the set of all normalized
exponential valuations of the field Q(X) such that v(a) = 0 for a ∈ Q. In
particular, every non-trivial exponential valuation in Q(X) is discrete.

(2)
⋂
π∈P∪{∞}AvX,π

= Q.
(3) For every π ∈ P ∪ {∞} the residue field QvX,π

of the valuation vX,π is a
simple extension of the field Q (more precisely - a simple extension of an
isomorphic image of the field Q, κvX,π

(Q), where κvz,P
: AvX,π

→ QvX,π
is

the cannonical epimorphism). Moreover [QvX,π
: κvX,π

(Q)] = deg π.

It is possible to show (by means of Krull intersection theorem) that all valuations
in Q(X) constant on Q are exponential and thus the above theorem gives a complete
description of all valuations that are of our interest. By the Baer-Krull theorem
we know that orderings in Q(X) arise from the orderings in the residue fields
associated with valuations on Q(X). Thhe above theorem states that the residue
fields associated with valuations on Q(X) are just the algebraic number fields Q(α).
Next, by the Artin-Schreier theorem, Q(α) is an ordered field if and only if Q(α) ⊂
R, that is if α ∈ R. We shall describe orderings in Q(α) in more details.

Orderings on Q(α) are in bijective correspondence with Q-embeddings of Q(α)
into R. Moreover, it is not difficult to check, that embeddings of Q(α) into R are
in bijective correspondence with real roots of the minimal polynomial π of α. On
the other hand, valuations that are of our interest are in bijective correspondence
with irreducible polynomials in Q[X] and the element ∞. Let π be a monic, irre-
ducible polynomial and let α1, . . . , αm be all its real roots. Residue fields of vX,π
are isomorphic to Q(αj), each of which has m orderings corresponding to various
embeddings of Q(αj) into R; to avoid considering too many isomorphic cases we
shall simply assume that each Q(αj) has only one ordering, coming from the natu-
ral embedding into the reals. Next, the semisection s : Z → Q(X) \ {∞} of vX,π is
clearly given by s(n) = πn and there are two characters σ : Z/2Z → {−1, 1}, one
mapping −1 to −1 and the other to 1. Applying directly Baer-Krull theorem we
obtain 2m orderings corresponding to polynomial π:

φσ1
1 , . . . , φσ1

m , φ
σ2
1 , . . . , φσ2

m ,

which, in terms of polynomials, are described as follows: if g ∈ Q[X] and g =
πv(g) · h, then

g ∈ φσ1
i ⇔ (h(αi) ∈ R2 ∧ v(g) - even ) ∨ (−h(αi) ∈ R2 ∧ v(g) - odd )

and
g ∈ φσ1

i ⇔ h(αi) ∈ R2.

Similarly, we can check that the remaining valuation vX,∞ : Q(X) → Z ∪ {∞}
be the remaining valuation of Q(X) given by:

vX,∞(g) =

{
∞, if g = 0,
deg q − deg p, if g = p(X)

q(X) , p, q ∈ Q[X] \ {0}.

induces two orderings
φσ1 and φσ2
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defined, for a polynomial g = anX
n + . . .+ a0 ∈ Q[X], as follows:

g ∈ φσ1 ⇔ (an > 0 ∧ n - even ) ∨ (an < 0 ∧ n - odd )

and
g ∈ φσ2 ⇔ an > 0.

For our needs it will be much more convenient to use a slightly different descrip-
tion of those orderings. Namely, for real roots α1, . . . , αm of a monic, irreducible
polynomial π, we define orderings α+

i and α−i by the rules

g ∈ α+
i ⇔ ∃ε>0g > 0 on (αi, αi + ε)

and
g ∈ α−i ⇔ ∃ε>0g > 0 on (αi − ε, αi),

for g ∈ Q[X] and i ∈ {1, . . . ,m}. Now, since π has no multiple roots, it is easy to
check that

{α+
i , α

−
i } = {φσ1

i , φ
σ2
i }.

We have thus provided the full description of the space of orderings (XvX,π
, GvX,π

)
and (Xv∞ , Gv∞). We shall denote this space by (Xπ, Gπ) and (X∞, G∞), respec-
tively.

3.4. pp-conjecture for the field Q(X). Let f, p ∈ Q[X] be two non-zero, square-
free polynomials, let S denote the set of monic irreducible divisors of f and p having
at least one real root. For π ∈ S we denote by α1, . . . , αm all real roots of π. Denote
by gπ the mapping gπ : GQ(X) → Gπ given by

gπ(f) = f |Xπ
.

The following two conditions are equivalent:
(1) 1 ∈ D(f, p) in the space (XQ(X), GQ(X)),
(2) 1 ∈ D(gπ(f), gπ(p)) in the space (Xπ, Gπ), for all π ∈ S ∪ {∞}.

The implication (1) ⇒ (2) is obvious and for the other, by Theorem 5 it suffices
to show that for all x ∈ R f(x) ≥ 0 or g(x) ≥ 0. Sort all real roots of all π ∈ S
in such a way that α1 < α2 < . . . < αn. Set α0 = −∞ and αn+1 = +∞. Clearly
f(αi) = 0 or p(αi) = 0. Fix i ∈ {1, . . . , n} and take π such that π(αi) = 0. By
Theorem 5 1 ∈ D(gπ(f), gπ(p)) means that for every real root α of π f ∈ α+ or
p ∈ α+ and f ∈ α+ or p ∈ α−. If one of f, p belongs to α+

i , then it is positive on
(αi, αi + ε) for some ε > 0. Otherwise f or p is positive on (αi, αi+1). In case i = 0
we proceed in a similar manner.

The above equivalence enables us to prove the following fundamental result:

Theorem 7. Let φ be a pp formula with parameters c1, . . . , ck, where ci’s are
sqyare-free:

φ = ∃v1,...,vnψ(v1, . . . , vn, c1, . . . , ck),
where ψ is a finite conjunction of atomic formulae:

a ·
n∏
i=1

vεii = 1

or

1 ∈ D(a
n∏
i=1

vεii , b
n∏
i=1

vµi

i ),
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where εi, µi ∈ {0, 1}, v0 = 1, v1 = v and a, b are products of ±1 and some of ci’s.
If S denotes the set of all monic irreducible divisors of c1, . . . , ck having at least
one real root, then the following two conditions are equivalent:

(1) φ holds in (XQ(X), GQ(X)),
(2) φ holds in (Xπ, Gπ) for every π ∈ S ∪ {∞}.

Proof. One implication is trivial and for the other denote by (Y,H) the subspace
generated by all subspaces (Xπ, Gπ), π ∈ S ∪ {∞}. H is a quotient of G for and
denote the appropriate surjective mapping by f : GQ(X) → H. It follows that
H =

∏
π∈S∪{∞}Gπ and that

H |= ∃v1,...,vnψ(v1, . . . , vn, f(c1), . . . , f(ck)).

Thus there exist square-free t1, . . . , tn ∈ Q[X] \ {0} such that

H |= ψ(f(t1), . . . , f(vn), f(c1), . . . , f(ck))

and it follows that

Gπ |= ψ(gπ(t1), . . . , gπ(vn), gπ(c1), . . . , gπ(ck)).

Now decompose ti as ti = ti0 · ti1, where ti0 =
∏
{π ∈ S : π|ti}. Since π’s are

monic, ti and ti0 have the same leading coefficient. If we order all real roots of
all π ∈ S so that α1 < α2 < . . . < αm and set α0 = −∞, αm+1 = +∞, denote
Il = (αl, αl+1) and δ−il = sgn (til(αl)), δ+il = sgn (til(αl+1)), then we see, that since
no π ∈ S divides til, til doesn’t vanish on αl and δ−il , δ

+
il ∈ {±1}. Let

pil =
{

0 if δ−il = δ+il ,
1 if δ−il 6= δ+il

,

denote by τi the leading coefficient of ti and pick any rational number rl ∈ Il.
Finally, define

t′il = τi

m∏
l=0

(X − rl)pil and t′i = ti0 · t′il.

We shall show that
GQ(X) |= ψ(t′1, . . . , t

′
n, c1, . . . , ck).

According to the remarks preceeding the theorem, it suffices to show that

Gπ |= ψ(gπ(t′1), . . . , gπ(t′n), gπ(c1), . . . , gπ(ck)),

for all π ∈ S ∪ {∞} together with π being monic irreducible divisors of t′i’s. First,
consider the case when π ∈ S ∪ {∞}. If π ∈ S, then we shall first show that

sgn (ti1(αl)) = sgn (t′i1(αl)), l ∈ {0, . . . ,m+ 1}.
Since ti1 changes sign on Il if and only if t′i1 does and sgn (ti1(αm+1)) = sgn (t′i1(αm+1)) =
sgn (τi) it follows by descending induction that our claim is true for αm, αm−1, . . . , α0.
Now, given the fact that we know that Xπ = {α+, α− : α is a real root of π}, we
see that 1 ∈ D(a

∏n
i=1 t

ε
i , b

∏n
i=1 t

µi

i ) holds in (Xπ, Gπ) if and only if for every real
root of π:

(a
n∏
i=1

tεii ∈ α
+ ∨ b

n∏
i=1

tµi

i ∈ α+) ∧ (a
n∏
i=1

tεii ∈ α
− ∨ b

n∏
i=1

tµi

i ∈ α−),

which we have just proved. If π = ∞, then the validation of our claim follows from
the fact that (just proved) that ti1 and t′i1 have the same sign at ±infty and thus
their degrees are congruent modulo 2.
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If π = X − rl, then t′i1 doesn’t change sign on (αl, rl) and (rl, αl+1) and ti0, cj
don’t change sign on (αl, αl+1). Let 1 ∈ D(f1, f2) be an atomic formula appearing
in ψ. f1, f2 don’t change sign on (αl, rl) and (rl, αl+1), so if one of them is positive
at α+

l+1 then so is at r−l and if one of them is positive at α−l+1 then so is at r+l .
Since Xπ = {r−l , r

+
l }, that completes the proof. �

The above theorem gives an affirmative solution to the pp conjecture in the case
of the field Q(X).

4. Spaces of orderings of rational conics

4.1. Coordinate rings and function fields of conics. Our main goal in this
paragraph is to show that either a function field of an irreducible conic section is a
purely transcendental extension of a ground field of degree 1 or a coordinate ring
of such curve is a PID (both possibilities may occur). We give elementary proofs
of those facts.

We shall investigate all non-isomorphic classes of coordinate rings of conics. Let
K be a fixed field, charK 6= 2. The following lemma states a well-known fact:

Lemma 12. Let F ∈ K[X,Y ] be a polynomial of degree 2. The curve

(1) C : F (X,Y ) = 0,

is affine isomorphic to a curve of parabolic type:

(2) aX2 + Y = 0, a ∈ K∗,

or to a curve of parallel type:

(3) aX2 + c = 0, a ∈ K∗, c ∈ K,

or to a curve of elliptic (hyperbolic) type:

(4) aX2 + bY 2 + c = 0, a, b ∈ K∗, c ∈ K.

Lemma 13. If the irreducible curve (1) is affine isomorphic to the curve (2), then
its function field K(C) is a purely transcendental extension of K of degree 1.

Proof. C is affine isomorphic to C′ : aX2 + 2Y = 0, hence

K(C) ∼= (K[X,Y ]/(aX2 + Y )) = K(x, y),

where x, y are elements transcendental over K such that ax2 + y = 0. Then
K(x, y) = K(x, ax2) = K(x). �

Among all non-parabolic conics we shall distinguish between curves having K-
rational points and curves without such points.

Lemma 14. If the irreducible curve (1) has a K-rational point, then it is affine
isomorphic to a curve of type either (2) or (4).

Proof. Suppose that C is affine isomorphic to C′ : aX2 +c = 0 and has a K-rational
point. Thus C′ has a K-rational point (q, r) and

aX2 + c = aX2 − aq2 = a(X − q)(X + q),

so that C′ is reducible and so is C - a contradiction. �
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Next, consider the special case of the irreducible curve

(5) aX2 + bY 2 = 0, a, b ∈ K∗.

This curve is birationally isomorphis to the curve (3) without K-ational points.
Indeed, the mapping (X,Y ) 7→ (XY , 1) maps (5) onto C′ : a(XY )2 + b = 0. Clearly, if
(p, q) is a K-rational point on C′, then b = −ap2 and aX2 + bY 2 = a(X − pY )(X +
pY ), so that (5) is reducible.

Lemma 15. If the irreducible curve (1) is affine isomorphic to

(6) aX2 + bY 2 + c = 0, a, b, c ∈ K∗.

and has a K-rational point, then K(C) ∼= K(z) for a z transcendental over K.

Proof. By assumption K(C) ∼= K(x, y), where ax2 + by2 + c = 0 and x, y are
transcendental over K. Moreover aq2 + br2 + c = 0 for some (q, r) ∈ K2. Thus
ax2 − aq2 = br2 − by2. Let z = x−q

y−r . Hence K(z) ⊂ K(x, y) - conversely, we have:

az(x+ q) = a
x− q

y − r
(x+ q) =

ax2 − aq2

y − r
=

= −by
2 − br2

y − r
= −b(y + r)

and after rearranging:

(7) azx+ by = −azq − br.

On the other hand the equation z = x−q
y−r gives:

(8) x− zy = q − zr.

The determinant −az2 − b of the system of equations (7) and (8) is nonzero; if
it was zero, then a(x − q)2 + b(y − r)2 = 0, which, since ax2 + by2 + c = 0 and
aq2 + br2 + c = 0, would imply that 2c + 2axq + 2byr = 0. Since c 6= 0, at least
one of q and r is nonzero, so that we may express either x or y as a linear function
of y or x, respectively. Thus (6) shows that either y or x is algebraic over K and,
consequently, both x and y are algebraic over K - a contradiction. Therefore we
may express both x and y as rational functions of z. �

In view of the above lemmas we shall restrict our research to coordinate rings of
type (3) and (6) conics without K-rational points: we aim to prove that such rings
are PID. For a curve C affine isomorphic to (3) we have K[C] ∼= K[x, y], where x
and y are transcendental over K and ax2 + c = 0, so that K[C] = K[

√
− c
a ][y] =

K(
√
− c
a )[y] is a PID. The elliptic (hyperbolic) case is more complicated; we start

with a lemma.

Lemma 16. Let R be a PID, let ∆ ∈ R be a square-free element and let 2 ∈ R∗.
Then R[

√
∆] is a Dedekind domain.

Proof. Since the integral closure of a Dedekind domain in a finite extension of its
quotient field is Dedekind, it suffices to show that R[

√
∆] is the integral closure of

R. An element α+β
√

∆ ∈ R[
√

∆] is a root of the polynomial T 2−2αT +α2−∆β2

in R[T ] and hence is integral. Conversely, fix an integral element g = α + β
√

∆ ∈
(R[

√
∆]), α, β ∈ (R). Since the mapping:

(R[
√

∆]) 3 ϕ+ ψ
√

∆ = h 7→ h = ϕ− ψ
√

∆ ∈ (R[
√

∆])
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is an R-automorphism, g is integral and so is g + g = 2α. Since 2 is invertible in
R, also α is integral, which means that α ∈ R.

Now β
√

∆ = g−α is integral and, consequently, β2∆ is integral. But β2∆ ∈ (R),
implying that β2∆ ∈ R. Let ϕ,ψ ∈ R be such that β = ϕ

ψ , gcd (ϕ,ψ) = 1. Then
(ϕψ )2∆ = η for some η ∈ R, which gives ϕ2∆ = ψ2η. But ∆ is sqare-free and ϕ,ψ

are coprime, so, since R is a PID, ψ2 has to be a unit in R and, consequently, ψ is
also a unit. Therefore β = ϕ

ψ ∈ R proving that g ∈ R[
√

∆]. �

This lemma applies to the coordinate ring of the irreducible curve C of type
(6) with no K-rational points: since c 6= 0, K[C] ∼= R[

√
∆], where R = K[x] and

∆ = − c
b −

a
bx

2 is irreducible in R and hence square-free (if ∆ = (x − q)(x − r),
q, r ∈ K, then (q, 0), (r, 0) ∈ K2 would be K-rational points on C).

Theorem 8. The coordinate ring K[C] of the irreducible curve (3) or (6) with no
K-rational points is a PID.

Proof. We have already discussed type (3) curves. Let K[C] ∼= R[
√

∆], ∆ = − c
b −

a
bx

2, where x is an element transcendental over K, be the coordinate ring of an
irreducible curve (6) without K-rational points. For all prime ρ ∈ R, deg xρ > 1
we shall show:

[∃α∈R(deg xα < deg xρ) ∧ (ρ|α2 −∆)] ⇒ [∃u∈K∗∃h∈R[
√

∆]uρ = hh]

where h is the image of h under the conjugate authomorphism:

R[
√

∆] 3 ϕ+ ψ
√

∆ = h 7→ h = ϕ− ψ
√

∆ ∈ R[
√

∆].

We proceed by induction on deg xρ: if deg xρ = 1, then for some q ∈ K ρ(q) = 0
and hence 0 = α2(q) −∆(q) = α2(q) + c

b + a
b q

2, contradicting the fact that C has
no K-rational points.

If deg xρ = 2, then deg xα ≤ 1 and since deg x∆ = 2, deg x(α2 − ∆) ≤ 2. By
assumption ργ = α2 − ∆ for some γ ∈ R; since ∆ is square-free, γ 6= 0. But
deg xγ = 0 and thus γ = u ∈ K∗.

Assume that deg xρ > 2 and for γ, α ∈ R such that deg xα < deg xρ we have
γρ = α2 − ∆. If γ is constant, then, because ∆ is square-free, γ = u ∈ K∗.
Otherwise let γ = ρ1·. . .·ρs, ρ1, . . . , ρs ∈ R, be the factorization of γ into irreducibles
(and hence primes, as R is PID). Fix an arbitrary i ∈ {1, . . . , s}. Since deg xα <
deg xρ it follows that deg xγ < deg xρ and, consequently, deg xρi < deg xρ. Clearly
ρi|α2 −∆ so if βi is the remainder of the division of α by ρi, then ρi|β2

i −∆ and
deg xβi < deg xρi. By hypothesis uiρi = hihi for ui ∈ K∗, hi ∈ R[

√
∆], and hence

uρ
∏s
i=1 hihi = h0h0 for some u ∈ K∗, where h0 = α−

√
∆.

For every i ∈ {1, . . . , s} (hi) and (hi) are prime ideals of R[
√

∆]. Indeed, out of
two possible decompositions of (ρi)e into prime ideals in R[

√
∆]:

(ρi)e prime, [R[
√

∆]/(ρi)e : R/(ρi)] = 2,

(ρi)e = A1A2, Ai prime, [R[
√

∆]/Ai : R/(ρi)] = 1, i ∈ {1, 2},

the first one cannot occur: since hihi ∈ (ρi)e, we may assume that hi ∈ (ρi)e, so
that 1 + (ρi)e and

√
∆ + (ρi)e are linearly dependent over R/(ρi). Thus (hi)(hi) =

(ρi)e = A1A2 and {(hi), (hi)} = {A1,A2}.
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Using the same arguments we can show that (ρ)e = B1B2, Bi prime, [R[
√

∆]/Bi :
R/(ρi)] = 1, i ∈ {1, 2}. Thus:

B1B2(h1) . . . (hs)(h1) . . . (hs) = (h0)(h0) = P1 . . .PkQ1 . . .Ql,

where P1 . . .Pk, Q1 . . .Ql are decompositions of (h0), (h0) into prime ideals. By the
uniqueness of such decomposition, either (hi) or (hi) appears in the decomposition
of (h0) - we may assume it is (hi), i ∈ {1, . . . , s}. Thus (h1 . . . hs) is a factor of (h0)
and for some h ∈ R[

√
∆] h0 = h1 . . . hsh, so that uρ = hh.

It remains to show that every prime ideal P of R[
√

∆] is principal. Indeed, P∩R
is prime and since R is a PID, P ∩ R = (π) for some prime π ∈ R. There are two
possible decompositions of (π)e in R[

√
∆]:

(9) (π)e prime, [R[
√

∆]/(π)e : R/(π)] = 2,

(10) (π) = P1P2, Pi prime, [R[
√

∆]/Pi : R/(π)] = 1,

for i ∈ {1, 2} (P1 and P2 might be equal). If (9) holds, then P = (π)e, since
(π)e ⊂ P and the Krull dimension dimR[

√
d̃] = 1.

If (10) holds, then, since (π)e ⊂ P ∩P, where P denotes the image of P under
the conjugate automorphism and rad Pi = Pi, i ∈ {1, 2}, it follows that P1 ⊂ P

and P2 ⊂ P (we rearrange indices, if neccesary). An isomorphic image of a prime
ideal is prime and dimR[

√
∆] = 1, so P1 = P and P2 = P.

Because [R[
√

∆]/P : R/(π)] = 1 and R/(π) is a field, there exists α ∈ R \ (π)
such that α+

√
∆ ∈ P. Then α2−∆ ∈ P∩R = (π), that is π|α2−∆. Replacing α

by the remainder of the division of α by π we may assume that deg xα < deg xπ. By
previous remarks uπ = hh for some u ∈ K∗, h ∈ R[

√
∆]. Thus PP = (π)e = (h)(h)

and h or h generate P. �

4.2. Spaces of orderings of function fields of elliptic conics over Q. We
focus on curves over a fixed ordered field K and investigate some of their properties
in the real closure K̃. In view of the previous remarks we can restrict our consid-
erations to the curves of type (6). To avoid trivial cases we shall assume existence
of some K̃-rational points. The curve (6) clearly satisfies either:

(11) a > 0, b > 0, c < 0, (elliptic type), or

(12) a > 0, b < 0, c < 0, (hyperbolic type).

Lemma 17. The curve (6) of type (12) without K-rational points is birationally
isomorphic to the curve (6) satisfying (11) with no K-rational points.

Proof. The birational isomorphism between the curves (6) satisfying (12) and (6)
satisfying (11) is given by (X,Y ) 7→ ( YX ,

1
X ) and maps C : aX2 + bY 2 + c = 0 onto

C′ : b( YX )2 +c( 1
X )2 +a = 0. Suppose that the resulting curve has a K-rational point

(q, r). If r 6= 0 then ( 1
r ,

q
r ) is a K-rational point on C, which yields a contradiction.

If r = 0, then we can parametrize K-rational points (q′, r′) on C′ for which r′ 6= 0 by
lines with K-rational slopes passing through (q, 0); the set of such points is clearly
nonempty, which again is a contradiction. �

¿From now on let K = Q. We shall therefore consider only the irreducible curves
(6) without Q-rational points for which (11) holds.
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Lemma 18. Let P denote the set of irreducibles of Q[C], let p ∈ P, p = P + I(C),
P ∈ Q[X,Y ], let ξ(1), . . . , ξ(m) be all real points of intersection of P (X,Y ) = 0 with
C. Each point ξ(i), i ∈ {1, . . . ,m}, induces two orderings Q+

ξ(i) and Q−
ξ(i) of the

function field F of C:

(13) g ∈ Q+
ξ(i) ⇔ (H(ξ(i)) > 0 ∧ n even) ∨ (H(ξ(i)) < 0 ∧ n odd),

(14) g ∈ Q−
ξ(i) ⇔ H(ξ(i)) > 0,

for g = pn · h ∈ Q[C], h = H + I(C), H ∈ Q[X,Y ]. Conversely, every ordering of
F is of the form (13) or (14) for some p ∈ P and a real point of intersection ξ(i).

Proof. As before Q[C] ∼= R[
√

∆], with R = Q[x] and ∆ = − c
b −

a
bx

2, x being
transcendental over Q. Since R[

√
∆] is a PID, for p ∈ P the function vp : F →

Z ∪ {∞} given by

(15) vp(g) =
{
∞ if g = 0,
np if g = u ·

∏
q∈P q

nq , nq ∈ Z, u ∈ R[
√

∆]∗,

is a discrete valuation such that:

Mvp = (p) in Avp , (p) = Mvp ∩R[
√

∆] in R[
√

∆],

Avp
= R[

√
∆](p) ⊃ R[

√
∆], Fvp

= Avp
/Mvp

= R[
√

∆]/(p).

Conversely, every discrete valuation v : F → Z ∪ {∞} such that R[
√

∆] ⊂ Av is of
the form (15).

We are interested in valuations corresponding to orderings on F , that is the ones
having formally real residue fields. For such v : F → Z ∪ {∞} constant on Q,
F = Q(x, y), where x, y are transcendental over Q and ax2 + by2 + c = 0, we have
R[
√

∆] ⊂ Av; indeed, since (11) holds, a = q21 + . . .+ q2k, b = r21 + . . .+r2l , qi, rj ∈ Q
for i ∈ {1, . . . , k}, j ∈ {1, . . . , l} and thus:

−c = ax2 + by2 = (q1x)2 + . . .+ (qkx)2 + (r1y)2 + . . .+ (rly)2,

which follows that

0 = v(−c) = 2 min{v(q1x), . . . , v(qkx), v(r1y), . . . , v(rly)}
= 2 min{v(x), v(y)},

proving that x, y ∈ Av, so R[
√

∆] = Q[x, y] ⊂ Av.
Every valuation ring Q ⊂ B ⊂ F is a PID and a valuation ring which is a

PID is a discrete valuation ring, so every valuation in F constant on Q is of the
form (15). A valuation in F with formally real residue field induces a valuation in
Q compatible to some ordering of Q. Every ordering compatible to a non-trivial
valuation is non-archimedean, but the unique ordering of Q is archimedean, hence
every valuation in F is trivial on Q and (15) describes all valuations of our interest.

For an arbitrary p ∈ P the extension Fvp
= R[

√
∆]/(p) ⊃ Q is finite. By the

Artin-Schreier theorem, Fvp
is formally real if and only if Fvp

⊂ R. Orderings
of Fvp are in bijection with Q-embeddings of Fvp into R: each embedding ι :
Fvp ↪→ R defines an ordering Qι = ι−1(R2). Furthermore, if p = P + I(C), P ∈
Q[X,Y ], then Q-embeddings of Fvp

into R are in bijective correspondence with real
points of intersection of P (X,Y ) = 0 with C. Indeed, the mapping ξ 7→ ιξ, where
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ιξ(G+ (aX2 + bY 2 + c)) = G(ξ), is the required bijection, for an arbitrary point of
intersection ξ.

Instead of considering Fvp with m orderings Qι
ξ(i) , i ∈ {1, . . . ,m}, we shall

look at its isomorphic images ιξ(i)(Fvp
) with the ordering from R. The semisection

sp : Z → Fvp
\{0} of vp is given by sp(n) = pn and the two characters of Z/2Z, one

mapping 1 + 2Z onto −1 and the other 1 + 2Z onto 1, shall be denoted by σ1, σ2;
hence all orderings compatible with vp are Q+

ξ(1)
, . . . , Q+

ξ(m) , Q
−
ξ(1)

, . . . , Q−
ξ(m) , where

for g = pn · h ∈ Q[C], h = H + I(C), H ∈ Q[X,Y ]:

g ∈ Q+
ξ(i) ⇔

g

sp(n)
σ1(n+ 2Z) + (p) ∈ Qι

ξ(i) ⇔

⇔ (H(ξ(i)) > 0 ∧ n even) ∨ (H(ξ(i)) < 0 ∧ n odd).

Q−
ξ(i) is described analogously. �

Lemma 19. Let p = P + I(C), P ∈ Q[X,Y ], be prime in the coordinate ring Q[C]
of the irreducible curve (6) without Q-points satisfying (11), let ξ be a real point
of intersection of P (X,Y ) = 0 with C. Then P changes sign on C at ξ and P
intersects C in an even number of points.

Proof. Let ξ = (ξ1, ξ2). For a fixed ε > 0 and C viewed as a curve over the field R
we shall show that

S+
ε = {ζ ∈ C : U(ζ) > 0, P (ζ) > 0} 6= ∅,

where U(X,Y ) = ε2 − (X − ξ1)2 − (Y − ξ2)2. We identify C with its image under
the embedding C ↪→ Spec (Q[C]):

ζ 7→ Qζ = {G+ (aX2 + bY 2 + c) ∈ Q[C] : G(ζ) > 0}.

The unique constructible subset Ŝ+
ε of the real spectrum Spec (Q[C]) such that

Ŝ+
ε ∩ C = S+

ε is given by:

Ŝ+
ε = {℘ ∈ Spec (Q[C]) : u(℘) > 0, p(℘) > 0},

where a(℘) denotes the image of a under the canonical embedding of Q[C] into the

real closure of (Q[C]/℘ ∩ −℘) and a(℘) > 0 means a ∈ ℘. Since Q+
ξ ∈ Ŝ

+
ε , we have

that Ŝ+
ε 6= ∅ and thus S+

ε = Ŝ+
ε ∩ C 6= ∅.

Hence there are real points on C arbitrarily close to ξ where P is positive. Simi-
larly there are points on C close to ξ where P is negative. Since P has only finitely
many points of intersection with C, P is positive on one side of ξ and negative on
the other. �

Lemma 20. Let P (X,Y ) = mX+nY +k ∈ Q[X,Y ], m 6= 0, p = P+I(C). Then p
is prime in the coordinate ring Q[C] of the irreducible curve (6) without Q-rational
points satisfying (11).

Proof. Clearly p = (mx+k) +n
√

∆ ∈ R[
√

∆], where R = Q[x] and ∆ = − c
b −

a
bx

2.
Let p denote the image of p under the conjugate automorphism. Then p · p =
(mx + k)2 − n2∆ ∈ R is irreducible; if it was reducible, then p · p(q) = 0 for some
q ∈ Q. Hence ∆(q) = (mq+kn )2 and a(mx+kn )2 +bq2 +c = 0, but C has no Q-rational
points. Thus p is irreducible: if p = p1p2, then pp = p1p1 ·p2p2, p1p1, p2p2 ∈ R. �
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Now observe that for two real points ξ(1), ξ(2) on the irreducible curve (6) sat-
isfying (11) without Q-rational points we may pick rational points q(1), q(2) ∈ Q2

lying arbitrarily close to ξ(1), ξ(2). If P (X,Y ) = 0 is the line intersecting q(1)

and q(2), then P ∈ Q[X,Y ], P (X,Y ) = 0 lies arbitrarily close to ξ(1), ξ(2) and
p = P + I(C) ∈ Q[C] is irreducible.

Next we shall state a general theorem concerning pp formulae, which is a slight
modification of the main theorem proved in Section 3.

Theorem 9. Let C be the irreducible curve (6) without Q-rational points satisfying
(11), let F denote its function field. For a given pp-formula

φ = ∃t1 . . .∃tnψ(t1, . . . , tn, f1, . . . , fk),

f1, . . . , fk ∈ Q[C], fi ∈ GΣF 2 being images of fi ·ΣF 2 under the embedding GΣF 2 3
a · ΣF 2 7→ a ∈ {−1, 1}XF , let Σ denote the set of all irreducible factors of fi,
i ∈ {1, . . . , k}. The following conditions are equivalent:

(1) Gp |= φp, for every p ∈ Σ.
(2) GΣF 2[S] |= φS, for every proper subspace (XΣF 2[S], GΣF 2[S]).
(3) GΣF 2[S] |= φS, for every finite subspace (XΣF 2[S], GΣF 2[S]).

Proof. The only nontrivial part is (1) ⇒ (2). Let (XΣF 2[S], GΣF 2[S]) be a proper
subspace for some S ⊂ F , let 0 6= d ∈ ΣF 2[S] \ ΣF 2 - we may assume that
d ∈ Q[C], d = D + I(C). Clearly XΣF 2[S] ⊂ XΣF 2[d]. There exists Q ∈ XF such
that d /∈ Q, so XΣF 2[d] is proper and it suffices to show that GΣF 2[d] |= φ{d}. It is
equivalent to show that there exist t′1, . . . , t

′
n ∈ Q[C] \ {0} such that for each atom

1 ∈ D(g
∏n
i=1 ti

εi , h
∏n
i=1 ti

δi) of the formula φ, εi, δi ∈ {0, 1}, ti
0 = 0, ti

1 = ti,
i ∈ {1, . . . , n} and g, h being products of ±1 and a finite number of fi:

1 ∈ DGΣF2[d]
(τ{d}(g)

n∏
i=1

t′i
εi
, τ{d}(h)

n∏
i=1

t′i
δi)

holds true, where τ{d} : GΣF 2 → GΣF 2[d] is given by τ{d}(g) = g|XΣF2[d]
and t′i is

the image of t′i · ΣF 2[d] under the embedding:

GΣF 2[d] 3 a · ΣF 2[d] 7→ a ∈ {−1, 1}XΣF2[d] .

Let g and h be images of g ·ΣF 2[d] and h ·ΣF 2[d] under the above embedding,
let g = G+I(C), h = H+I(C), G,H ∈ Q[X,Y ]. It suffices to show that there exist
T ′1, . . . , T

′
n ∈ Q[X,Y ] \ {0} such that for each atom 1 ∈ D(g

∏n
i=1 ti

εi , h
∏n
i=1 ti

δi)
of the formula φ and for each point ζ ∈ C such that D(ζ) > 0:

G

n∏
i=1

T ′i
εi(ζ) ≥ 0 or H

n∏
i=1

T ′i
δi(ζ) ≥ 0.

Since d /∈ Q, there exists ℘ ∈ Spec (Q[C]) such that d(℘) < 0. Thus:

Ŝ− = {℘ ∈ Spec (Q[C]) : d(℘) < 0} 6= ∅

implying that S− = {ζ ∈ C : D(ζ) < 0} 6= ∅. Since D ∈ Q[X,Y ] is continuous,
D−1((−∞, 0)) is open and hence S− is open in the topology of C inherited from
R2. Every component J of S− is an open arc; replacing it by a smaller arc, if
necessary, we may assume that J does not contain any points of intersection of
P (X,Y ) = 0 with C, p = P + I(C), P ∈ Q[X,Y ], p ∈ Σ. Now it suffices to show
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that for any such arc J there exist T ′1 . . . T
′
n ∈ Q[X,Y ]\{0} such that for each atom

1 ∈ D(g
∏n
i=1 ti

εi , h
∏n
i=1 ti

δi) and for ζ ∈ C \ J :

G
n∏
i=1

T ′i
εi(ζ) ≥ 0 or H

n∏
i=1

T ′i
δi(ζ) ≥ 0.

Fix an arc J as required. The points of intersection divide C into disjoint arcs,
exactly one of them containing J . Let A = {I1, . . . , Im} be the set of remaining
arcs. For Ij ∈ A let pIj

∈ Q[C] be a linear irreducible intersecting C in two points:
one lying in Ij and the other in J .

Let (Y,H) be the subspace of (XF , GΣF 2) generated by the subspaces (Xvp

F , Gp)
for p ∈ Σ. By dualityH is a quotient ofG, with some surjective τ : GΣF 2 → H being
a quotient map, and by the approximation theorem for independent valuations,
(Y,H) is a direct sum of the (Xvp

F , Gp), p ∈ Σ. By our assumptions and by  Loś
theorem for ultraproducts:

H |= ∃t1 . . .∃tnψ(t1, . . . , tn, τ(f1), . . . , τ(fk)).

Thus there exist square-free t1, . . . , tn ∈ Q[C] such that

H |= ψ(τ(t1), . . . , τ(tn), τ(f1), . . . , τ(fk))

and - by  Loś theorem - for all p ∈ Σ:

Gp |= ψ(τp(t1), . . . , τp(tn), τp(f1), . . . , τp(fk)),

where τp : GΣF 2 → Gp is given by τp(g) = g|Xvp
F

. Factor each ti as ti = ti0 · ti1,
where ti0 is the product of those p ∈ Σ which divide ti, i ∈ {1, . . . , n}. Fix

i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and denote by (ζ(j); ζ(j)′) the arc Ij with endpoints
ζ(j) and ζ(j)′. Define µ−ij = sgnTi1(ζ(j)) and µ+

ij = sgnTi1(ζ(j)′). Since no p ∈ Σ

divides ti1, Ti1 does not vanish at ζ(j), ζ(j)′, and therefore µ−ij , µ
+
ij ∈ {±1}. Define

t′i1 = ϑi ·
∏m
j=1 p

θij

Ij
and t′i = ti0 · t′i1, where ϑi is the leading coefficient of Ti1 and

θij =
{

0 if µ−ij = µ+
ij

1 if µ−ij 6= µ+
ij .

Then for each ζ ∈ C \ J G
∏n
i=1 T

′
i
εi(ζ) ≥ 0 or H

∏n
i=1 T

′
i
εi(ζ) ≥ 0. �

Now we are in a position to state and prove the main theorem.

Theorem 10. Let (XF , GΣF 2) be the space of orderings of the function field F
of the irreducible curve (4) without Q-rational points satisfying (11). Then there
exists a pp-formula φ such that GΣF 2 |= ¬φ, but GΣF 2[S] |= φS for every proper
subspace (XΣF 2[S], GΣF 2[S]).

Proof. Let p1, . . . , p6 ∈ Q[C] be linear irreducibles, let ξ(1i), xi(2i) be points of in-
tersection of Pi with C, i ∈ {1, . . . , 6}, arranged as follows:

ξ(11), ξ(22), ξ(13), ξ(21), ξ(14), ξ(23), ξ(15), ξ(24), ξ(16), ξ(25), ξ(12), ξ(26)

Let f1 = p1p6, f2 = p1p4, f3 = −p1p2p3p5. Consider the formula

φ = ∃t1∃t2 (t1 ∈ D(1, f1) ∧ t2 ∈ D(1, f2) ∧ f3t1t2 ∈ D(1, f1f2)) .

We shall show that GΣF 2 |= ¬φ. Suppose the contrary: let GΣF 2 |= φ for
some square-free t1, t2 ∈ Q[C]. Let ti = Ti + I(C), Ti ∈ Q[X,Y ], fj = Fj + I(C),
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Fj ∈ Q[X,Y ], for i ∈ {1, 2}, j ∈ {1, 2, 3}. The signs of F1, F2 and F3 on the arcs
between ξ(ki), k ∈ {1, 2}, i ∈ {1, . . . , 6}, are as follows:

(ξ
(1

1
)
;ξ

(2
2
)
)

(ξ
(2

2
)
;ξ

(1
3
)
)

(ξ
(1

3
)
;ξ

(2
1
)
)

(ξ
(2

1
)
;ξ

(1
4
)
)

(ξ
(1

4
)
;ξ

(2
3
)
)

(ξ
(2

3
)
;ξ

(1
5
)
)

(ξ
(1

5
)
;ξ

(2
4
)
)

(ξ
(2

4
)
;ξ

(1
6
)
)

(ξ
(1

6
)
;ξ

(2
5
)
)

(ξ
(2

5
)
;ξ

(1
2
)
)

(ξ
(1

2
)
;ξ

(2
6
)
)

(ξ
(2

6
)
;ξ

(1
1
)
)

f1 - - - + + + + + - - - +
f2 - - - + - - - + + + + +
f3 - + - + + - + + + - + +

On the arcs (ξ(21); ξ(14)), (ξ(24); ξ(16)) and (ξ(26); ξ(11)) F1 and F2 are positive,
T1 and T2 are nonnegative. Near ξ(23) F1 is positive and so is T1. There is only
one irreducible p ∈ Q[C] such that P intersects C at ξ(23), namely p3; indeed, the
kernel of the evaluation homomorphism Q[C] 3 g 7→ G(ξ(23)) ∈ R is generated by
p3. Thus vp3(t1) is even and T1 does not change sign at ξ(13). Near ξ(13) F1F2 is
positive, so F3T1T2 is positive and F3 changes the sign, so that T2 changes sign.
That means that vp3(t2) is odd and hence T2 changes sign at ξ(23). To sum up: T2

changes signs at ξ(23) and ξ(13), but T1 does not.
Near ξ(12) F1 is positive and so is T2. Thus T2 does not change sign at ξ(22).

Near ξ(22) F1F2 is positive and so is F3T1T2 and F3 changes sign, so T1 must change
sign. Thus T1 changes signs at ξ(12) and ξ(22), but T2 does not. Near ξ(11) F1F2 is
positive and so is F3T1T2. F3 changes sign and so does T1T2. Thus one of T1 and
T2 changes sign, but not both. Thus at ξ(11) and ξ(21) either T1 changes sign (at
both points) or T2 changes sign, but not both.

On the arc (ξ(11); ξ(22)) F1F2 is positive and F3 is negative, so T1T2 is negative
or zero. Hence at any point of this arc if T1 changes sign, then so does T2 (and vice
versa) - say there are m1 such simultaneous sign changes. Similarly, there are m3

simultaneous sign changes of T1 and T2 on the arc (ξ(13); ξ(21)). On (ξ(22); ξ(13))
both F1F2 and F3 are positive, so T1T2 is positive or zero. Thus at any if T1 changes
sign, then so does T2 - say there are m2 such sign changes.

On (ξ(11); ξ(21)) T1 and T2 each change sign m1 +m2 +m3 + 1 times. The signs
of T1 and T2 at ξ(11) are the same as at ξ(21), so m1 + m2 + m3 is odd. On all
the other arcs at least one of F1 and F2 is positive, so at least one of T1 and T2 is
nonnegative - thus the simultaneous sign changes of T1 and T2 occur only at the
indicated m1 +m2 +m3 points.

The units of Q[C] are the elements of Q∗: indeed, if g = α+β
√

∆, ∆ = − c
b−

c
ax

2,
α, β ∈ Q[x], is an irreducible and g = α−β

√
∆, then g ·g = α2−β2(− c

b −
c
ax

2) is a
unit of (Q[x]. Thus deg xgg = 0,
so that β = 0 and deg xα = 0. Now let

t1 = u1q1 . . . qkr1 . . . rl and t2 = u2q1 . . . qkr
′
1 . . . r

′
m

be factorizations of t1 and t2 into irreducibles, u1, u2 ∈ Q∗. Let qi = Qi + I(C),
Qi ∈ Q[X,Y ]. The simultaneous sign changes occur at the points of intersection of
Qi with C. But since for each Qi there is an even number of such points and for
i 6= j Qi and Qj intersect C in different points, m1 +m2 +m3 must be even.
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Finally, Gpi
|= φpi

for i ∈ {1, . . . , 6} by the substitutions

p1 p2 p3 p4 p5 p6

t1 1 f3 1 1 1 1

t2 f3 1 f3 1 1 1

,

and by Theorem 9 GΣF 2[S] |= φS for every submodel GΣF 2[S]. �

4.3. Spaces of orderings of function fields of two parallel lines over Q. In
this section we complete our analysis by considering the case of a real irreducible
two paralles lines, i. e. aX2 + c = 0, a > 0, c < 0. We might as well assume a = 1.
This case is similar to the elliptic case, and the main arguments and results from
the previous paragraph carry over, with a bit of modification here and there.

The coordinate ring Q[C] can be identified with Q(
√
−c)[y], the polynomial ring

in one variable y with coefficients in the field Q(
√
−c). The valuations that are of

interest to us are also easy to describe. Units are identified with non-zero elements
of Q(

√
d). Unlike what happens in the elliptic case, units no longer necessarily have

constant sign on C.
We still have the linear irreducibles π = rx+sy+t, r, s, t ∈ Q, s 6= 0, but these no

longer suffice. To copy certain of the constructions used in the proofs of Theorems
9 and 10, we also use the fact that there are enough quadratic irreducibles in Q[C]
of the form

π = x± (r(y + s)2 + t), r, s, t ∈ Q, r > 0, |t| <
√
−c.

Lemma 21. For given real r, s, t satisfying r > 0, |t| <
√
−c, there exist rationals

r′, s′ and t′ arbitrarily close to r, s and t respectively, such that x+ (r′(y+ s′)2 + t′)
and x− (r′(y + s′)2 + t′) are irreducible in Q[C].

Proof. The discriminant of
√
−c± (r′(y+ s′)2 + t′) ∈ Q(

√
−c)[y] is −4r′(t′±

√
−c).

We want this to be not a square in Q(
√
−c). Proceed as follows: choose r′ to be

any rational square close to r, choose s′ close to s, choose t′ close to t and such
that t′2 + c is not a rational square (so then −t′ −

√
−c and −t′ +

√
−c are not

squares in Q(
√
−c)). We can, for example, choose t′ of the form t′ = pkt1 where p

is a prime such that the value of −c at p is odd, 2k > vp(−c) and vp(t1) ≥ 0. Then
vp(t′

2 + c) = vp(−c) is odd, so t′2 + c is not a square in Q. � �

The correspondence between points on C and orderings on Q(C) is the same
as before, but now there are additional orderings corresponding to the four half-
branches of C at ∞. These are precisely the orderings compatible with the real
valuation v∞ on Q(C) defined by v∞(f) = −degy(f).

Lemma 19 carries over with the same proof. Using this, we see that an irreducible
π has an even (resp., odd) number of roots on the line x = −

√
−c, and also on the

line x =
√
−c, if degy(π) is even (resp., if degy(π) is odd).

Lemma 20 also carries over without change but, regarding part (2) of Lemma 20,
there is also a similar result for the point at infinity: Suppose f, g, h are non-zero
elements of A and f, g, h denote the associated elements of Gv∞ . Then f ∈ D(g, h)
holds in (Xv∞ , Gv∞) iff fg ≥ 0 at p or fh ≥ 0 at p holds for all real points
p = (±

√
−c, p2) of C with |p2| sufficiently large.

With these preliminary remarks out of the way, we are now in a position to state
the main results of this section:
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Theorem 11. Let Q(C) be the function field of a rational conic x2 + c = 0, where
c is a negative and not a square. For a given pp-formula

φ = ∃t1 . . .∃tnψ(t1, . . . , tn, f1, . . . , fk),

fi denoting the image of fi ∈ Q[C]∗ under the homomorphism f 7→ f from F ∗ to G,
let Σ denote the set of all irreducible factors of the fi, i ∈ {1, . . . , k}. The following
conditions are equivalent:

(1) Gvπ
|= φvπ

, for each π ∈ Σ ∪ {∞}.
(2) GS |= φS, for each proper subspace (XS , GS) of (X,G).
(3) GS |= φS, for each finite subspace (XS , GS) of (X,G).

The proof of Theorem 11 is the same as the proof of Theorem 9, with minor
modifications to allow for the fact that we are now dealing with two parallel lines. In
defining the πI we allow not only linear irreducibles, but also quadratics irreducibles
as well (to take care of the case where the intervals I and J are both on the
same component of C). In the last step, in the definition of the t̃i, we define
t̃i = µi

∏
I∈T πI

siI , where siI = 0 or 1 depending on whether ti has the same
sign or opposite sign at the opposite ends of the open interval I, and where µi ∈
{1,−1, x,−x} is chosen so that t̃i has the same sign as ti at the ends of each of the
intervals I ∈ T .

Theorem 12. Let Q(C) be the function field of a rational conic x2 + c = 0, where
c is a negative and not a square. Then there exists a pp-formula φ with parameters
in G such that G |= ¬φ, but GS |= φS for each proper subspace (XS , GS) of (X,G).

Again, the proof of Theorem 12 is analogous to the proof of Theorem 10, but
instead of using just linear irreducibles we also allow suitably chosen quadratic
irreducibles. We arrange the zeros p1i, p2i, i = 1, . . . , 6 of these six irreducibles (for
example), so that the first six points

p11, p22, p13, p21, p14, p23

are on the line x = −
√
−c, in upward order, and the next six points

p15, p24, p16, p25, p12, p26

are on the line x =
√
−c, in the downward order. The reader may check that this

particular arrangement uses two linear irreducibles and four quadratic irreducibles
(two opening to the left, and two opening to the right).

5. Spaces of orderings of elliptic curves

5.1. Coordinate rings and function fields of elliptic curves. We shall try to
mimic main results from the first section of the previous chapter. First problem
that we have to solve is the fact that - unlike conic sections - elliptic curves divide
into two groups: singular and nonsingular curves. Fortunately, this problem is quite
easy to resolve. The following sequel of three lemmas completely classifies singular
elliptic curves over the fields Q with respect to the pp conjecture.

Lemma 22. Singular point on an elliptic curve with rational coefficients has ra-
tional coordinates.

Proof. It is well-known, that any elliptic curve is birationally equivalent to a Weier-
strass curve:

y2 = x3 + ax2 + bx+ c.
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Let (x0, y0) be a singular point, i. e. a point such that:

∂f

∂x
(x0, y0) = 3x2

0 + 2ax0 + b = 0,

∂f

∂y
(x0, y0) = −2y0 = 0,

where f(x, y) = x3 +ax2 +bx+c−y2. Thus clearly y0 = 0 ∈ Q. As a solution of the
equation 3x2

0 + 2ax0 + b = 0, x0 is of the form x0 = p+ q
√
r, p, q, r ∈ Q. Moreover,

x3
0 +ax2

0 +bx0 +c = y2
0 = 0, so x0 is a root of multiplicity 2 of x3

0 +ax2
0 +bx0 +c = 0

and thus:
x3

0 + ax2
0 + bx0 + c = (x− x0)2(x− x1).

By comparison of coefficients we get x2
0x1 = −c, x2

0 +2x0x1 = b and 2x0 +x1 = −a.
¿From the first equation we infer, that x1 is a conjugate of x2

0, that is x1 = p2+q2r−
2pq

√
r. On the other hand, from the last equation we have x1 = −a− 2p− 2q

√
r.

Thus, in particular, 2pq
√
r = 2q

√
r. Suppose that both q 6= 0 and r 6= 0. Then

p = 1 and, consequently, x0 = 1 + q
√
r, x1 = 1 + q2r − 2q

√
r. Hence:

b = x2
0 + 2x0x1 = 3− q2r + 2q3r

√
r,

which implies that 2q3r
√
r = 0, that is either q = 0 or r = 0 - a contradiction.

Therefore q = 0 or r = 0 and in both cases x0 = p ∈ Q. �

Lemma 23. Singular curves are birationally equivalent to curves of the form Y 2 =
X3 +AX2, A ∈ Q.

Proof. Let (x0, y0) ∈ Q2 be a singular point. The Weierstrass curve:

y2 = x3 + ax2 + bx+ c

is then affine isomorphic to a desired curve by the substitution X := x−x0, Y := y;
indeed, we have:

x3 + ax2 + bx+ c = X3 + 3X2x0 + 3Xx2
0 + x3

0+
+ aX2 + 2aXx0 + ax2

0 + bX + bx0 + c =
= X3 +X2(3x0 + a) +X(3x2

0 + 2ax0 + b) = X3 +AX2

�

Lemma 24. K(X,Y ) ∼= K(T ) if Y 2 = X3 +AX2

Proof. Let T = X
Y . Then clearly K(T ) ⊂ K(X,Y ). Conversely, Y = X

T , so
X2

T 2 = X2(X + A) which implies that 1
T 2 = X + A. Therefore X = 1

T 2 − A and
Y = 1

T 3 − A
T . �

Therefore function fields of singular elliptic curves are isomorphic to Q(X) and
the pp conjecture holds for spaces of orderings of such fields by the results of chapter
3. Thus we can restrict ourselves to the case of nonsingular elliptic curves.

We have shown that every singular elliptic curve over Q has a rational parametriza-
tion. Unfortunately, there is no hope for nonsingular curves to have such property.

Lemma 25. No nonsingular elliptic curve over Q admits a rational parametriza-
tion.
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Proof. Suppose that E is a nonsingular elliptic curve and that (x(t), y(t)) is a
parametrization of E. We may consider it as a parametrization of a complex elliptic
curve with complex numbers. Thus we have a holomorphic function f : C → E(C)
from complex numbers to complex points on E(C). We can extend this function to
the meromorphic function F : C∪ {∞} → P(C) from the punctured complex plane
to the complex projective extension of E(C): we map point ”at infinity” onto a
suitable limiting value and points for which denominators of x(t), y(t) vanish onto
the point ”at infinity”. Such function is onto.

Now P(C) is topologically homeomorphic to a complex torus (the proof of this
fact uses the assumption that E is nonsingular) and C ∪ {∞} is homeomorphic to
a real 2-sphere. We have thus constructed a covering of a torus by a sphere, which
is not possible - a contradiction. �

Thus we will not be able to reduce some of the cases of function fields of non-
singular elliptic curves to the case of the field Q(X), as we did with conic sections.

Next, in the case of conic sections we have distinguished between curves having
rational points and curves without such points. The case of nonsingular elliptic
curves is much more complicated; apparently it is hard even to name an example
on a nonsingular elliptic curve without rational points. The simplest examples of
such curves are found among Mordell curves, that is the curves of the form:

y2 = x3 + k, k ∈ Z.

Clearly every Mordell curve is nonsingular: the only point for which both partial
derivatives vanish is (0, 0) and it doesn’t belong to the curve. There are certain
values of k for which the curve y2 = x3 + k has no integer solutions, for example
if k = 6, 7, 11, 13, 14, 20, 21, 23, 29, 32, . . . (proofs of these facts are quite elementary
and can be found in number theory books). How to choose those curves among
them, which not only have no integer points, but no rational points as well? In
this case the celebrated Nagell-Lutz theorem comes handy: for a nonsingular curve
with integer coefficients and discriminant D, if a rational point (x, y) is of finite
order in the group E(Q), then x and y are integers and either y = 0, in which case
(x, y) has order two, or else y divides D. Using this theorem we see that there are
no rational points of finite order.

What about the ones of infinite order? The group of rational points E(Q) is a
finitely generated abelian group and therefore E(Q) = Zr⊕Tors; we already know
that Tors = 0 and we can compute the rank r using some software, for example
GP pari:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r 0 1 1 0 1 0 0 1 1 1 1 1 0 0 2

.

The common values are, for example, 6 and 7 - therefore there are no rational points
on curves

y2 = x3 + 6 and y2 = x3 + 7
(elementary proofs of these facts are also available).

The above examples show that it seems incredibly difficult to classify all the
elliptic curves with respect to the pp conjecture. However, the author hopes that
he will be able at least to find some more counterexamples to the pp conjecture. As
an object of further examination, Mordell curves without rational points look very
promising - for example curves y2 = x3 + 6 or y2 = x3 + 7. A sllightly modified
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argument from chapter 4 allows us to show, that coordinate rings of those curves
are Dedekind domains. There is certain hope that they will be also principal ideal
domains and that we will be able to easily describe valuations of functions fields of
those curves. These issues are currently under investigation.

6. Spaces of orderings of function fields in many variables

6.1. Spaces of orderings of function fields in many variables. In this section
we shall prove that the pp conjecture fails for the space of orderings of the field
Q(x, y). The strategy is as follows: we shall prove that the class of spaces of order-
ings for which pp conjecture holds is closed under subspaces and group extensions
and then consider the diagram:

Q[x, y](f)
//

''NNNNNNNNNNN
(Q[x, y]/(f))

Q(x, y)

,

where f is such polynomial that the pp conjecture fails in the space of orderings
of (Q[x, y]/(f)). The space of orderings of the field of fractions of the local ring
Q[x, y](f) is a subspace of the space of orderings of the field Q(x, y) and the space
of orderings of the field (Q[x, y]/(f)) is its group extension. Suppose that the
pp conjecture holds for the space of orderings of Q(x, y). Then it also holds for
Q[x, y](f), as for a subspace, and thus it holds for (Q[x, y]/(f)), as for a group
extension - a contradiction. By induction the result follows for a space of orderings
of any rational function field over Q in a finite number of variables. It remains
to prove the two key results: that the class of spaces of orderings for which pp
conjecture holds is closed under subspaces and group extensions.

Theorem 13. Let (X,G) be a space of orderings and (X,G) its group extension.
Then pp conjecture holds in (X,G) if and only if pp conjecture holds in (X,G).

Proof. Assume that pp conjecture holds in the space (X,G) and suppose that

P (a) = ∃t
m∧
j=1

pj(t, a) ∈ D(1, qj(t, a)),

where t = (t1, . . . , tn), a = (a1, . . . , ak) and pj(t, a), qj(t, a) are products of ± some
of the ti’s, i ∈ {1, . . . , n}, and some of the al’s, l ∈ {1, . . . , k}, is a pp formula which
holds in every finite subspace of (X,G) but does not hold in (X,G). Clearly P (a)
will not hold in a space generated by the group extension G[a] ⊃ G, so that we
may assume that the extension G ⊃ G is finite. Taking instead of G the biggest
intermediate group for which P (a) will hold and instead of G an extension of such
group by one element, we may also assume that G = G[c], that is G = G ∪Gc.

Fix an arbitrary δ ∈ {0, 1}n, δ = (δ1, . . . , δn) and let

u = (u1, . . . , un), ui ∈ G, i ∈ {1, . . . , n},

where t = (u1c
δ1 , . . . , unc

δn). Moreover, let

b = (b1, . . . , bk), bl ∈ G, l ∈ {1, . . . , k},

where a = (b1cε1 , . . . , bkcεk) for certain εl ∈ {0, 1}, l ∈ {1, . . . , k}. Denote by
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pδj(u, b) = pj(a, t), j ∈ {1, . . . ,m},
qδj (u, b) = qj(a, t), j ∈ {1, . . . ,m}.

and

P δ(b) = ∃u
m∧
j=1

pδj(u, b) ∈ D(1, pδj(u, b)).

We claim that P δ(b) is a formula in (X,G). Indeed, fix an j ∈ {1, . . . ,m} and
consider pδj(u, b) and qδj (u, b). There are four following cases to consider:

(1) pδj(u, b) = pδjc and qδj (u, b) = qδj c for some pδj , q
δ
j ∈ G,

(2) pδj(u, b) = pδjc and qδj (u, b) = qδj for some pδj , q
δ
j ∈ G,

(3) pδj(u, b) = pδj and qδj (u, b) = qδj c for some pδj , q
δ
j ∈ G,

(4) pδj(u, b) = pδj and qδj (u, b) = qδj for some pδj , q
δ
j ∈ G.

Case (4) is immediate. Case (3) is reducible to case (1) by means of the identity

pδj ∈ D(1, qδj c) ⇔ pδjq
δ
j c ∈ D(1, qδj c),

and case (2) is reducible to case (1) since

pδjc ∈ D(1, qδj ) ⇔ pδjc ∈ D(1,−pδjqδj c).

Finally, since D(1, qδj c) = {1, qδj c} and pδjc 6= 1, in case (1) the atomic formula

pδjc ∈ D(1, qδj c)

reduces to pδjc = qδj c, which is equivalent to pδj = qδj , the latter being a statement
in (X,G).

Clearly P δ(b) can not hold in (X,G). Thus there exists a finite subspace
(Y

δ
, G|

Y
δ ) of (X,G) for which P δ(b) fails to hold. Let (Y ,G|Y ) =

⋂
g∈S⊂G UX(g)

be a subspace of (X,G) generated by the set
⋃
δ∈{0,1}n Y

δ
. As a space generated

by finite set it is finite itself and gives a rise to three finite subspaces of (X,G):

Y1 =
⋂
g∈S⊂G UX(g), Y2 =

⋂
g∈S⊂G UX(g) ∩ UX(c)

and
Y3 =

⋂
g∈S⊂G

UX(g) ∩ UX(−c).

Since none of P δ(b) holds in (Y ,G|Y ), P (a) holds in neither of (Ys, G|Ys), s ∈
{1, 2, 3}, all of them being finite subspaces of (X,G) - a contradiction.

Now assume that the pp conjecture holds in (X,G) and suppose that

P (a) = ∃t
m∧
j=1

pj(t, a) ∈ D(1, qj(t, a)),

where t = (t1, . . . , tn), a = (a1, . . . , ak) and pj(t, a), qj(t, a) are as before is a
pp formula which holds in every finite subspace of (X,G) but does not hold in
(X,G). Similarly, we may assume that G = G[c]. Clearly P (a) is also a for-
mula in (X,G). As before, every finite subspace (Y ,G|Y ) of (X,G) gives a rise
to three finite subspaces (Y1, G|Y1), (Y2, G|Y2) and (Y3, G|Y3) of (X,G) and if P (a)
holds in (Y ,G|Y ) then it also holds in all of the three mentioned spaces. Con-
versely, if (Y,G|Y ) =

⋂
gcε∈Sc{0,1}⊂Gc{0,1}=G UX(gcε) is a finite subspace of (X,G)

then so is
⋂
gcε∈Sc{0,1}⊂Gc{0,1}=G UX(gcε) ∩ U(c), which, in turn, induces a finite
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subspace (Y ,G|Y ) =
⋂
g∈S⊂G UX(g) of (X,G). Therefore if P (a) holds true in

every finite subspace of (X,G) then it also holds true in every finite subspace of
(X,G). By our assumptions this implies that P (a) holds in (X,G), that is for some
t = (u1c

ε1 , . . . , unc
εn), ui ∈ G, εi ∈ {0, 1}, i ∈ {1, . . . , n} we have

pj(t, a) ∈ D(1, qj(t, a)), for j ∈ {1, . . . ,m}.

In each pj(t, a) and qj(t, a), j ∈ {1, . . . ,m} replace t with u, u = (u1, . . . , un).
We thus obtain elements pj(u, a) and qj(u, a) of the group G such that

pj(u, a)cµj = pj(t, a) and qj(u, a)cνj = qj(t, a)

for some µj , νj ∈ {0, 1}, j ∈ {1, . . . ,m}. We shall show that

pj(u, a) ∈ DX(1, qj(u, a)) for all j ∈ {1, . . . ,m}.

Fix a j ∈ {1, . . . ,m}. As before, we shall consider four distinct cases.
(1) pj(u, a)c = pj(t, a) and qj(u, a)c = qj(t, a),
(2) pj(u, a)c = pj(t, a) and qj(u, a) = qj(t, a),
(3) pj(u, a) = pj(t, a) and qj(u, a)c = qj(t, a),
(4) pj(u, a) = pj(t, a) and qj(u, a) = qj(t, a).

Case (4) is obvious. Case (1) just means that pj(u, a) = qj(u, a), so trivially
pj(u, a) ∈ DX(1, qj(u, a)). In case (3) the formula pj(u, a) ∈ DX(1, qj(u, a)c) is
equivalent to pj(u, a)qj(u, a)c ∈ DX(1, qj(u, a)c), so again pj(u, a)qj(u, a) = qj(u, a)
and thus pj(u, a) = 1 and pj(u, a) ∈ DX(1, qj(u, a)) is satisfied. In a similar way in
case (2) we get qj(u, a) = −1, so that the claimed statement holds true.

We have thus proved that P (a) holds in (X,G), which is a contradiction. �

Theorem 14. Let (X,G) be a space of orderings and let (Y,G|Y ) be its subspace.
If pp conjecture holds in (X,G), then it also holds in (Y,G|Y ).

Proof. Step 1: Let Y = U(a1, . . . , an). We shall show that if pp conjecture holds
in (X,G), then it also holds in (Y,G|Y ).

Let P (a) = ∃t
∧m
j=1 pj(a, t) ∈ D(1, qj(a, t)) be a pp formula such that P (a)

holds for every finite subspace of (Y,G|Y ). We shall show that P (a) holds true for
(Y,G|Y ). Let Z =

⋂
a∈S U(a) be a finite subspace of (X,G). Then Z ∩Y is a finite

subspace of (Y,G|Y ), so P (a) holds true for (Z ∩ Y,G|Z∩Y ). Let

P (a, Y ) = ∃t
m∧
j=1

pj(a, t) ∈ D((1, qj(a, t))⊗ ((a1, . . . , an))).

By [11, Theorem 2.4.4] P (a, Y ) holds for Z if and only if P (a) holds for Z∩Y . Thus
P (a, Y ) holds true for every finite subspace (Z,G|Z) and since the pp conjecture
remains valid in (X,G), P (a, Y ) holds true in (X,G), so that P (a) holds true in
(Y,G|Y ).

Step 2: Let Y =
⋂
a∈S U(a). As before, we shall show that if pp conjecture

holds in (X,G), then it also holds in (Y,G|Y ).
For let P (a) = ∃t

∧m
j=1 pj(a, t) ∈ D(1, qj(a, t)) be a pp formula such that P (a)

holds for every finite subspace of (Y,G|Y ). We shall show that P (a) holds true
for (Y,G|Y ). In order to do that it suffices to show that for some finite subset
T ⊂ S P (a) holds in

⋂
a∈T U(a). Suppose, a contrario, that for every finite subset

T ⊂ S P (a) fails in
⋂
a∈T U(a). By step 1 it follows that for every finite subset
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T ⊂ S there exists a finite subspace ZT of
⋂
a∈T U(a) such that P (a) fails in ZT .

By [1, Lemma 4] for every finite subset T ⊂ S there exists a finite subspace YT of⋂
a∈T U(a) of cardinality at most B, where B is some integer, such that P (a) fails

in YT . Let YT = {xT1 , xT2 , . . . , xTB}. For i ∈ {1, . . . , B} {xTi : T ∈ 2S , T - finite} is a
net with entries directed according to the rule

xTi ≥ xT
′

i if and only if T ⊇ T ′.

Since X is compact, {xT1 : T ∈ 2S , T - finite} has a cluster point x1. Let {xT1
1 :

T1 ∈ Σ1} be a net finer than {xTi : T ∈ 2S , T - finite} which converges to x1, where
Σ1 ⊂ {T ∈ 2S : T - finite}. Next, {xT1

2 : T1 ∈ Σ1} has a cluster point x2, so let
{xT12

2 : T12 ∈ Σ12} be a net finer than {xT1
2 : T1 ∈ Σ1} which converges to x2, where

Σ12 ⊂ Σ1. By induction we will eventually construct the net {xT12...B

B : T12...B ∈
Σ12...B} finer than {xT12...B−1

B : T12...B−1 ∈ Σ12...B−1} which converges to a cluster
point xB of the net {xT12...B−1

B : T12...B−1 ∈ Σ12...B−1}, where Σ12...B ⊂ Σ12...B−1.
Clearly the net

{xT12...B
i : T12...B ∈ Σ12...B}

is finer than {xTi : T ∈ 2S , T - finite} and converges to xi, i ∈ {1, . . . , B}. Let Z be
a space generated by x1, . . . , xB .

We shall show that Z is a finite subspace of Y ; indeed, it suffices to show that
all the generators x1, . . . , xB are elements of Y . Fix an arbitrary i ∈ {1, . . . , B}
and a ∈ S - we shall show that xi ∈ U(a). Suppose that xi /∈ U(a). Since
X is compact and hence regular, there is an open set V such that xi ∈ V and
V ∩ U(a) = ∅. But xi is a cluster point of {xT12...B

i : T12...B ∈ Σ12...B} and hence
of {xTi : T ∈ 2S , T - finite}, so there exists an element xTi such that xTi ≥ x

{a}
i and

xTi ∈ V . Then xTi ∈ YT ⊂
⋂
a∈T U(a) ⊂ U(a) - a contradiction.

Finally, we shall show that P (a) fails in Z. Suppose that the converse is true
and that P (a) holds true in Z. Let t be such that pj(a, t) ∈ D(1, qj(a, t)) in Z,
j ∈ {1, . . . ,m}. Clearly

x1, x2, . . . , xB ∈ U =
m⋂
j=1

{U(pj(a, t)) ∪ [U(−pj(a, t)) ∩ U(−qj(a, t))]}.

Since xi is a limit of the net {xT12...B
i : T12...B ∈ Σ12...B}, there exists a Ti ∈ Σ12...B

such that xT12...B
i ∈ U for all xT12...B

i ≥ xTi
i , where i ∈ {1, . . . , B}. Let T0 ∈ Σ12...B

be such that T0 ⊇ Ti, i ∈ {1, . . . , B}. Then xT0
1 , xT0

2 , . . . , xT0
B ∈ U , so P (a) holds

true in YT0 - a contradiction. �
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