
RESULTANTS AND THE BEZOUT THEOREM

PAWEL GLADKI

1. The Intersections of Plane Curves

Let K be an algebraically closed field. Consider polynomials f, g ∈ K[X]:

(1)
f(X) = a0X

s + a1X
s−1 + . . . + as, a0 6= 0,

g(X) = b0X
t + g1X

t−1 + . . . + bt, b0 6= 0.

We define the resultant of polynomials (1) by:

Res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . . . . . . . as 0 . . . 0
0 a0 . . . . . . . . . as−1 as . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . a0 a1 . . . . . . as

b0 b1 . . . . . . bt 0 . . . . . . 0
0 b0 . . . . . . bt−1 bt . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . b0 b1 . . . . . . . . . bt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

During the class we have already shown the following theorem:
Corollary 6.15 gcd(f, g) = 1 iff. Res(f, g) 6= 0.

Now we would like to generalize this result to the case of the polynomials in two
variables and use it to count points of intersections of plane curves. Firstly we have
to show some basic properities of resultants.

Lemma 1. Under the above notation Res(f, g) = (−1)stRes(g, f).

Proof. In order to obtain Res(g, f) from Res(f, g) we shall interchange tṡ rows in
the determinant. �

Lemma 2. Under the above notation there exist polynomials p, q ∈ K[X] such that:

pf + gq = Res(f, g).
1
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Proof. Observe that:

Res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . as 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . a0 a1 . . . as

b0 b1 . . . bt 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . b0 b1 . . . bt

∣∣∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣∣

a0 . . . as 0 . . . a0X
s+t−1 + a1X

s+t−2 + . . . + asX
t−1

. . . . . . . . . . . . . . . . . .
0 . . . a0 a1 . . . a0X

t + a1X
t−1 + . . . + as

b0 . . . bt 0 . . . b0X
s+t−1 + b1X

s+t−2 + . . . + btX
s−1

. . . . . . . . . . . . . . . . . .
0 . . . b0 b1 . . . b0X

s + a1X
s−1 + . . . + bt

∣∣∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . as 0 . . . Xt−1f
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . a0 a1 . . . f
b0 b1 . . . bt 0 . . . Xs−1g
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . b0 b1 . . . g

∣∣∣∣∣∣∣∣∣∣∣∣
.

We finish the proof by expanding the last determinant by the last column and
putting together terms with f and g �

Lemma 3. Under the above notation let Res0(f, g) be the determinant obtained
from Res(f, g) by setting:

b0 = b1 = . . . = bk−1 = 0, k ≤ t.

Let g0(X) = bkXt−k + . . . + bt, bk 6= 0. Then:

ak
0Res(f, g0) = Res0(f, g).

Proof. Follows immediately from expansion Res0(f, g) along the first column. �

Lemma 4. Under the above notation let Res1(f, g) be the determinant obtained
from Res(f, g) by setting:

a0 = a1 = . . . = al−1 = 0, l ≤ s.

Let f1(X) = alX
s−l + . . . + as, as 6= 0. Then:

(−1)ltbl
0Res(f1, g) = Res1(f, g).

Proof. Follows immediately from lemmas 1 and 3. �

In all these considerations the field K can be replaced by the field of ratio-
nal functions, and a0, . . . , as, b0, . . . , bt may be polynomials. Consider polynomials
f, g ∈ K[X, Y ]:

(2)
f(X, Y ) = f0(X)Y s + f1(X)Y s−1 + . . . + fs(X),
g(X, Y ) = g0(X)Y t + g1(X)Y t−1 + . . . + gt(X).
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Define the resultant of polynomials (2) by:

ResY (f, g)(X) =

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0(X) . . . . . . . . . fs(X) 0 . . . 0
0 . . . . . . . . . fs−1(X) fs(X) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . f0(X) f1(X) . . . . . . fs(X)

g0(X) . . . . . . gt(X) 0 . . . . . . 0
0 . . . . . . gt−1(X) gt(X) . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . g0(X) g1(X) . . . . . . . . . gt(X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We have the following generalization of Corollary 6.15:

Theorem 1. gcdY (f, g) ∈ K[X] iff. ResY (f, g)(X) 6= const.0.

Proof. Follows immediately from Corollary 6.15. �

We will now apply this theorem for solving systems of algebraic equations. Con-
sider the system:

(3)
{

f(x, y) = 0
g(x, y) = 0.

We shall prove:

Theorem 2. There exists a solution (a, b) of the system (3), (f0(a), g0(a)) 6= (0, 0)
iff. ResY (f, g)(a) = 0, (f0(a), g0(a)) 6= (0, 0).

Proof. (⇒) Suppose f(a, b) = 0, g(a, b) = 0. Let:

fa(Y ) = f0(a)Y s + . . . + fs(a) ∈ K[Y ], ga(Y ) = g0(a)Y t + . . . + gt(a) ∈ K[Y ].

Since fa(b) = ga(b) = 0, fa, ga ∈ K[Y ] have the common root. If f0(a) 6= 0 and
g0(a) 6= 0, then by Corollary 6.15 ResY (f, g)(a) = Res(fa, ga) = 0. If f0(a) 6= 0 or
g0(a) 6= 0, then we may assume f0(a) 6= 0. Say g0(a) = g1(a) = . . . = gk−1(a) = 0,
gk(a) 6= 0, k ≤ t. Denote by Res0(fa, ga) the determinant obtained from Res(fa, ga)
by substituting g0(a) = g1(a) = . . . = gk−1(a) = 0 and let g0a(Y ) = gk(a)Y t−k +
. . . + gf (a) ∈ K[Y ]. Of course g0a(b) = ga(b), so fa, g0a ∈ K[Y ] have the common
root. By Lemma 3 and Corollary 6.15:

ResY (f, g)(a) = Res1(fa, ga) = (f0(a))kRes(fa, g0a) = 0.

(⇐) Suppose ResY (f, g)(a) = 0. Let:

fa(Y ) = f0(a)Y s + . . . + fs(a) ∈ K[Y ], ga(Y ) = g0(a)Y t + . . . + gt(a) ∈ K[Y ].

If f0(a) 6= 0 and g0(a) 6= 0, then 0 = ResY (f, g)(a) = Res(fa, ga) and by Corollary
6.15 fa and ga have common factor, which - since K is algebraically closed - has
a root b. If f0(a) 6= 0 or g0(a) 6= 0, then we may assume f0(a) 6= 0. Say g0(a) =
g1(a) = . . . = gk−1(a) = 0, gk(a) 6= 0, k ≤ t. Denote by Res0(fa, ga) the determi-
nant obtained from Res(fa, ga) by substituting g0(a) = g1(a) = . . . = gk−1(a) = 0
and let g0a(Y ) = gk(a)Y t−k + . . . + gf (a) ∈ K[Y ]. By Lemma 3:

0 = ResY (f, g)(a) = Res1(fa, ga) = (f0(a))kRes(fa, g0a),

so Res(fa, g0a) = 0. Therefore, by Corollary 6.15, fa and ga have common factor
and hence a common root b. Of course g0a(b) = ga(b) = g(a, b), which finishes the
proof. �
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Theorem 2 implies the following method of solving the system (3):

• Form the resultant ResY (f, g)(X) ∈ K[X].
• Each root of ResY (f, g)(X) which does not satisfy the equations f0(x) = 0,

g0(x) = 0 is an ”a” from at least one solution (a, b).
• Form the resultant ResX(f, g)(Y ) ∈ K[Y ].
• Each root of ResX(f, g)(Y ) which does not satisfy the equations f0(y) = 0,

g0(y) = 0 is a ”b” from at least one solution (a, b).

Let, for example:

f(X, Y ) = X2 − 2XY + 3X, g(X, Y ) = Y 2 − 4X.

We have:

ResY (f, g)(X) =

∣∣∣∣∣∣
−2X X2 + 3 0

0 −2X X2 + 3
1 0 −4X

∣∣∣∣∣∣ = X2(X2 − 10X + 9),

ResX(f, g)(Y ) =

∣∣∣∣∣∣
1 3− 2Y 0
−4 Y 2 0
0 −4 Y 2

∣∣∣∣∣∣ = Y 2(Y 2 − 8Y + 12).

Thus the possible ”a’s” are 0, 1 and 9 and possible ”b’s” are 0, 2, 6. Hence only
the following pairs can be solutions of (3):

(0, 0), (0, 2), (0, 6), (1, 0), (1, 2), (1, 6), (9, 0), (9, 1), (9, 6).

We can easy find that only (0, 0), (1, 2), (9, 6) are solutions of the system (3).

2. The Basic Version of the Bezout Theorem

Consider the following example:

(4) f(X, Y ) = XY 2 − Y + X2 + 1, g(X, Y ) = X2Y 2 + Y − 1.

An easy calculation leads to the result:

ResY (f, g)(X) = X2(X6 + 2X4 + 2X3 + 2X2 + 3X + 1),
ResX(f, g)(Y ) = (Y − 1)(Y 6 + Y 5 − Y 4 + 2Y 3 − 2Y 2 + Y − 1).

In particular, ResY (f, g)(0) = 0. But on the other hand, since f0(X) = X, g0(X) =
X2, we have:

f0(0) = g0(0) = 0,

so the points of the type (0, b) do not satisfy the hypoteses of Theorem 2. However,
it is easy to verify that - for example - the point (0, 1) is the solution of (4).
Therefore - in order to solve the system of the form (3) - we need the upper bound
for the number of solutions. The so called Bezout theorem (or, at least, a version
of it) gives such bound:

Theorem 3 (Bezout). Let f, g ∈ K[X, Y ] be the polynomials of degrees r and s,
respectively. If f and g have no common factor of degree > 0, then there exist at
most rṡ solutions of system (3).

In order to prove the Bezout theorem, we will need some general properities of
resultants.
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Lemma 5. Let f, g ∈ K[X1, . . . , Xr, Y1, . . . , Ys, T ] ⊂ K(X1, . . . , Xr, Y1, . . . , Ys)[T ]
be such that:

f(T ) = a0T
r + . . . + ar ∈ K(X1, . . . , Xr, Y1, . . . , Ys)[T ],

g(T ) = b0T
s + . . . + bs ∈ K(X1, . . . , Xr, Y1, . . . , Ys)[T ],

where aj ∈ K[X1, . . . , Xr], degaj = j, bj ∈ K[Y1, . . . , Ys], degbj = j are monic
polynomials. Let a0 = . . . = ak−1 = 0, ak 6= 0, b0 = . . . = bm−1 = 0, bm 6= 0. Then
Res(f, g) ∈ K(X1, . . . , Xr, Y1, . . . , Ys) is a monic polynomial of degree rs− km.

Proof. Obviously R(f, g) ∈ K[X1, . . . , Xr, Y1, . . . , Ys]. Fix an element c ∈ K and
(x1, . . . , xr, y1, . . . , ys) ∈ Kr+s. We will show that:

R(f, g)(cx1, . . . , cxr, cy1, . . . , cys) = crj−kmR(f, g)(x1, . . . , xr, y1, . . . , ys).

Indeed, we have:

R(f, g)(cx1, . . . , cxr, cy1, . . . , cys) =

=

ckak ck+1ak+1 . . . crar 0 . . . 0 ← ·cm

. . . . . . . . . . . . . . . . . . . . .
...

0 0 . . . ckak ck+1ak+1 . . . crar ← ·cs−1

cmbm cm+1bm+1 . . . csbs 0 . . . 0 ← ·ck

. . . . . . . . . . . . . . . . . . . . .
...

0 0 . . . cmbm cm+1bm+1 . . . csbs ← ·cr−1

=

=
1

c
m+s−1

2 (m−s)+ k+r−1
2 (k−r)

·

·

∣∣∣∣∣∣∣∣∣∣∣∣

ck+mak ck+m+1ak+1 . . . cr+mar 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . ck+s−1ak ck+sak+1 . . . cr+s−1ar

ck+mbm ck+m+1bm+1 . . . ck+sbs 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . cm+r−1bm cm+rbm+1 . . . cr+s−1bs

∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus:

c
m+s−1

2 (m−s)+ k+r−1
2 (k−r)R(f, g)(cx1, . . . , cys) =

= c(k+m)+(k+m+1)+...+(r+s−1)Res(f, g)(x1, . . . , ys),

so by comparing the powers of c we finish the proof. �

Lemma 6. Let f, g ∈ K(X1, . . . , Xr, Y1, . . . , Ys)[T ] be such that:

f(T ) = (T −X1)(T −X2) . . . (T −Xr),
g(T ) = (T − Y1)(T − Y2) . . . (T − Ys).

Then Res(f, g) =
∏r

j=1

∏s
k=1(Xj − Yk).

Proof. By the Viete formulae:

f(T ) = T r − S1(X1, . . . , Xr)T r−1 + . . . + (−1)rSr(X1, . . . , Xr),
g(T ) = T s − S1(Y1, . . . , Ys)T s−1 + . . . + (−1)sSs(Y1, . . . , Ys),

where Si are the primitive symmetric polynomials. Of course each Si is a non-zero
monic polynomial in r or s variables, so by Lemma 5 Res(f, g) is a monic polynomial
of degree rs. By the Corollary 6.15 Res(f, g) = 0 when Xj = Yk for some j and
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k. Therefore, as Res(f, g) ∈ K(X1, . . . , Xj−1, Xj+1, . . . , Xr, Y1, . . . , Ys)[Xj ] and
Res(f, g)(Yk) = 0, we have that Xj−Yk|Res(f, g). Since Xj and Yk are algebraically
independent, Xj − Yk and Xl − Yp are relatively prime if j 6= l or k 6= p. Thus
Res(f, g) is divisible by the product of all Xj − Yk:

Res(f, g) = λ
s∏

j=1

(Xj − Yk).

Since deg
∏r

j=1

∏s
k=1(Xj − Yk) = rs = degRes(f, g), we have that λ is constant.

Now we only have to show that λ = 1. Indeed, set X1 = . . . = Xr = 0,
Yk = cos( 2πk

s ) + i sin( 2πk
s ). Then f(T ) = T r, g(T ) = T s− 1 and it is easy to verify

that Res(f, g) = (−1)r. Since
∏s

k=1(T − Yk) = T s − 1, we have
∏r

j=1

∏s
k=1 =∏r

j=1(X
s
j − 1) = (−1)r. As λ is independent on the values of Xj , Yk, this finishes

the proof. �

Lemma 7. Let f, g ∈ K[T ] be such that:

f(T ) = a0T
r + . . . + ar = a0(T − c1) . . . (T − cr),

g(T ) = b0T
s + . . . + bs = b0(T − d1) . . . (T − ds).

Then:

Res(f, g) = as
0b

r
0

r∏
j=1

s∏
k=1

(cj − dk) = as
0

r∏
j=1

g(cj) = (−1)rsbs
0

s∏
k=1

f(dk).

Proof. If a0 = b0 = 1 then, by substitution Xj = cj , Yk = dk in Lemma 6 we have:

(5) Res(f, g) =
r∏

j=1

s∏
k=1

(cj − dk).

If a0 6= 1, b0 6= 1, then the resultant Res(f, g) is obtained from Res( f
a0

, g
b0

) by
multiplying first s rows by a0 and last r rows by b0. Hence:

Res(f, g) = as
0b

r
0

r∏
j=1

s∏
k=1

(cj − dk)

follows directly from (5). To prove the rest of the theorem observe that since:

g(T ) = b0

s∏
k=1

(T − dk),

we have:

as
0prodr

j=1g(cj) = as
0

r∏
j=1

(b0

s∏
k=1

(cj − dk)) = as
0b

r
0

r∏
j=1

s∏
k=1

(cj − dk).

Similarly:

(−1)rsbs
0

s∏
k=1

f(dk) = as
0b

r
0

r∏
j=1

s∏
k=1

(cj − dk).

�
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Define the discriminant of the polynomial f of degree r as the number:

∆(f) = (−1)
r(r−1)

2
1
a0

Res(f, f ′).

The next lemma gives us an useful property of discriminant:

Lemma 8. Let f ∈ K[T ] be such that:

f(T ) = a0T
r + . . . + ar = a0(T − c1) . . . (T − cr).

Then:

∆(f) = a2r−2
0

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
c1 c2 . . . cr

...
...

. . .
...

cr−1
1 cr−1

2 . . . cr−1
r

∣∣∣∣∣∣∣∣∣
2

.

Proof. We have:

f ′(T ) = a0

r∑
j=1

(T − c1) . . . (T − cj−1)(T − cj+1) . . . (T − cr).

Hence it follows:

f ′(cj) = a0(cj − c1) . . . (cj − cj−1)(cj − cj+1) . . . (cj − cr) =

= (−1)r−ja0(cj − c1) . . . (cj − cj−1)(cj+1 − cj) . . . (cr − cj)

for j ∈ {1, . . . , r}. By Lemma 7:

Res(f, f ′) = ar−1
0

r∏
j=1

f ′(cj) =

= a2r−1
0 (−1)(r−1)+(r−2)+...+1+0(c2 − c1)(c3 − c1) . . . (cr − c1) ·
·(c2 − c1)(c3 − c2) . . . (cr − c2)(cr − c1)(cr − c2) . . . (cr − cr−1).

In the above product every difference ck − cj occurs twice. Thus:

a0∆(f) = (−1)
r(r−1)

2 Res(f, f ′) = a2r−1
0

∏
k>j

(ck − cj)2.

�

Finally we can prove Bezout theorem. The main idea is based on the following
lemma:

Lemma 9. Let f, g ∈ K[X, Y ] be the polynomials of degrees r and s respectively.
Then degRes(f, g) ≤ rs.

Proof. Substitute X := X1
X2

, Y := Y
X2

. Then f, g ∈ K(X1, X2, Y ). We find the
common denominator and then cancel it. Thus we obtain two monic polynomials
f+, g+ ∈ K[X1, X2, Y ] of degrees r and s. Write:

f+(X1, X2, Y ) = f0(X1, X2)Y r + . . . + fr(X1, X2),
g+(X1, X2, Y ) = g0(X1, X2)Y s + . . . + gs(X1, X2),

where fj , gk ∈ K[X1, X2] are monic polynomials either equal to 0 or of degrees j nad
k, respectively. By Lemma 5 Res(f+, g+) (with respect to Y ) is a monic polynomial
of degree ≤ rs. Since f(X1, Y ) = f+(X1, 1, Y ) and g(X1, Y ) = g+(X, 1, Y ) and
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ResY (f, g) is obtained from Res(f+, g+) by substituting X2 = 1, this proves the
lemma. �

Now suppose that f, g ∈ K[X, Y ] are the polynomials of degrees r and s, respec-
tively, having no commong factor of degree > 0 and that there exist rs+1 different
solutions of the system (2). Observe that there exists a number s such that:

aj + cbj 6= ak + cbk, 1 ≤ j < k ≤ rs + 1

(elsewhere, substituting c = 0 and c = 1 we would obtain aj = ak and bj = bk for
some j and k). Substitute:

X := X ′ − cY ′, Y = Y ′

and let:

f(X, Y ) = f0(X)Y r + f1(X)Y r−1 + . . . + fr(X),
g(X, Y ) = g0(X)Y s + g1(X)Y s−1 + . . . + gs(X).

Then:

f1(X ′, Y ′) = f0(X ′ − cY ′)Y ′r + f1(X ′ − cY ′)Y ′r−1 + . . . + fr(X ′ − cY ′),
g1(X ′, Y ′) = g0(X ′ − cY ′)Y ′s + g1(X ′ − cY ′)Y s−1 + . . . + gs(X ′ − cY ′)

are the polynomials of degrees r and s, respectively. Set:

(a′j , b
′
j) = (aj + cbj , bj), j ∈ {1, 2, . . . , rs = 1}.

We have a′j 6= a′k for j 6= k and it is easy to verify, that:

f1(a′j , b
′
j) = g1(a′j , b

′
j) = 0.

By Theorem 2, a′1, a
′
2, . . . , a

′
rs+1 are roots of the resultant ResY ′(f1, g1)(X ′) of poly-

nomials f1 and g1. By Lemma 9, degResY ′(f1, g1)(X ′) ≤ rs, so ResY ′(f1, g1)(X ′)
is the zero-polynomial. By Theorem 1 gcdY (f, g) /∈ K[X], which is a contradiction
to the assumptions of the theorem. Therefore the Bezout theorem is proved.

3. Statement of the General Version of the Bezout Theorem

Let f(X, Y ) ∈ F [X, Y ] be a polynomial. An affine plane algebraic curve is
the set:

Z(f) = {(x, y) : f(x, y) = 0}.
Our aim is to figure out missing assumptions of the following theorem:

Theorem 4 (Bezout). Two plane �1 algebraic curves Z(f), Z(g) �2 of degrees
d = deg(f) and e = deg(g) over a field �3 F have �4 d · e common points.

We write �i to denote the missing assumption. It is easy to complete assumption
�3. Consider curves:

f(X, Y ) = Y, (OX axis, degree 1)
g(X, Y ) = Y − h(X), (a graph of polynomial h(X) ∈ F [X], degree degh(X)).

It follows from the Bezout theorem, that every polynomial of degree n has n roots
in F . Thus:

�3 = ”algebraically closed”.
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Moreover, consider curves:

f(X, Y ) = Y,

g(X, Y ) = Y −X2.

As we expect that f nad g have 2 points of intersection, we must assume:

�4 = ”counted with multiplicities”.

It is clear that if gcd(f, g) 6= 1, then Z(f), Z(g) mave infinitely many points of
intersection, hence:

�2 = ”without common factor”.
Finally, consider two lines:

f(X, Y ) = Y,

g(X, Y ) = Y + 1.

If we want Z(f) and Z(g) to intersect, we must - instead of ”affine” geometry - go
to ”projective” geometry. Thus:

�1 = ”projective”.

Hypoteses �3 and �2 are clear. However we should define what do ”projec-
tive curve” and ”multiplicities of intersection” mean. The first definition is quite
intuitive - we need an polynomial equation whose zeroes are homogenous triples
(a : b : c). The monic polynomials are good candidates. Definition of multiplicity
of intersection is far from clear and can not be explained in this short project. The
reader should refer to Hartshorne’s ”Algebraic geometry” for more details.
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