
1. Krull valuations

Let G be an additive and commutative group. A subset S ( G is said to be an
ordering of the group G if:

(1)
∧

s1,s2∈S s1 + s2 ∈ S,
(2)

∧
a∈G a ∈ S ∨ −a ∈ S,

(3) S ∩ −S = {0}, where −S = {a ∈ G : −a ∈ S}.
For the given ordering S of the group G we denote:

a ≤S b⇔ b− a ∈ S.

It is easy to prove that the relation ≤⊂ G×G is a linear ordering, that is:

(1)
∧

a∈G a ≥ a,
(2)

∧
a,b∈G a ≥ b ∧ b ≥ a⇒ a = b,

(3)
∧

a,b,c∈G a ≥ b ∧ b ≥ c⇒ a ≥ c,
(4)

∧
a,b∈G a ≥ b ∨ b ≥ a ∨ a = b,

such that

(5)
∧

a,b,c∈G a ≥ b⇒ a+ c ≥ b+ c,

if and only if the set S = {a ∈ G : a ≥ 0} is an ordering. Moreover, observe that
ordered abelian groups do not have elements of finite order: indeed, suppose that
a ∈ G is an element of order n. We may assume that a > 0. Then 0 = na =
a + a + . . . + a > 0, which is a contradiction. For the ordered group G we define
a projective group G ∪ {∞} consistent of the group G with its ordering and a
symbol ∞ which satisfies the following conditions:

(1)
∧

a∈G a <∞,
(2)

∧
a∈G a+∞ = ∞+ a = ∞.

Now we can define a Krull valuation. Let F be a field and G∪{∞} an ordered
projective group called the value group. A function v : F → G ∪ {∞} is said to
be the Krull valuation (or simply the valuation) when:

(1)
∧

a∈F v(a) = ∞⇔ a = 0,
(2)

∧
a,b∈F v(ab) = v(a) + v(b),

(3)
∧

a,b∈F v(a+ b) ≥ min{v(a), v(b)}, provided a+ b 6= 0.

Observe that if v : F → G ∪ {∞} is the valuation, then:

v(1) = 0.

Indeed, we have that v(1) = v(1 · 1) = v(1) + v(1), hence v(1) = 0. Similarly, using
the identity a · a−1 = 1 we can show that:

v(a−1) = −v(a).

Next, since 0 = v(1) = v((−1) · (−1)) = v(−1) + v(−1), we have that v(−1) = 0 or
v(−1) is an element of order 2. The second possibility cannot hold, so v(−1) = 0
and thus:

v(−a) = v(a).

Finally, observe that:

v(a) 6= v(b) ⇒ v(a+ b) = min{v(a), v(b)}.
1
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Indeed, suppose that for some a, b ∈ F we have v(a) 6= v(b). We may assume that
v(a) < v(b). Suppose that v(a + b) 6= min{v(a), v(b)}. This implies v(a + b) >
min{v(a), v(b)}, in particular v(a+ b) > v(a). Thus:

v(a) = v((a+ b)− b) ≥ min{v(a+ b), v(b)} > v(a)

which is a contradiction.
Next we shall introduce the notion of valuation rings. Let F be a field. A ring

A ⊂ F is called the valuation ring if:∧
a∈F

a ∈ A ∨ a−1 ∈ A.

If the field F is not given we shall assume that F is the field of fractions of A.
There is a natural correspondence between valuations and valuation rings which is
described by the two theorems that we shall state.

Theorem 1. Let v : F → G ∪ {∞} be a valuation.
(1) The set:

Av = {a ∈ F : v(a) ≥ 0}
is a valuation ring. We shall call it the valuation ring associated with
v.

(2) The set:
Mv = {a ∈ F : v(a) > 0}

is the only maximal ideal in the ring Av. In particular, Av is a local ring
and Fv = Av/Mv is a field, which shall be called the bf residue field of v.

(3) The set:
Uv = {a ∈ F : v(a) = 0}

is a group consistent of all units of the ring Av.

Proof. (1) By the definition of a valuation we can directly check that Av is a ring.
To show that this is a valuation ring fix a ∈ F and suppose that a /∈ Av. Then
v(a) < 0. This implies that v(a−1) = −v(a) > 0, so a ∈ Av.

(2). Without any difficulty we can verify that Mv is an ideal. In order to check
that this is the only maximal ideal it suffices to show that a ∈ Mv if and only if
a /∈ U(Av). Suppose that a ∈ Mv, that is v(a) > 0. Suppose that there exists
b ∈ Av such that a · b = 1. Then v(b) ≥ 0, but also v(b) = v(a−1) = −v(a) < 0
- a contradiction. Conversely, suppose that for a fixed a ∈ Av we have a /∈ Mv,
that is v(a) = 0. Since F is a field, for some b ∈ F we have a · b = 1. Then
0 = v(1) = v(ab) = v(a) + v(b) = v(b), so b ∈ Av. That means that a ∈ U(Av). (3)
follows immediately from (2). �

This theorem states that for every valuation v we can choose a valuation ring
Av. We will prove that the converse is also true, that is that for any valuation
ring A there is the cannonical valuation vA, whose valuation ring is the same as A.
We need some preliminaries, though. For a given field F we define a divisibility
relation | ⊂ F × F such that:

(1)
∧

a∈F a|a,
(2)

∧
a,b,c∈F a|b ∧ b|c⇒ a|c,

(3)
∧

a,b,c∈F a|b⇒ ac|bc,
(4)

∧
a,b,c∈F a|b ∧ a|c⇒ a|b− c.
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Clearly for a given divisibility relation | in F :∧
a∈F

a|0∧ ∼ 0|a.

Moreover, the family of all divisibility relations in the field F is in bijective cor-
respondence with the family of all subrings of F . More precisely, if R ⊂ F is a
subring, then the condition:

a|b⇔ b · a−1 ∈ R
defines a divisibility relation and for the given divisibility relation | ⊂ F × F the
set:

R = {a ∈ F : 1|a}
is a subring of F with the following group of units:

U(R) = {a ∈ R : a|1}.
It is easy to see that R is a valuation ring if and only if the corresponding divisibility
relation | is total, that is: ∧

a,b∈F

a|b ∨ b|a.

Assume that | is total and fix a ∈ F such that a /∈ R. Then ∼ 1|a (otherwise
a · 1−1 = a ∈ R) and since | is total it follows that a|1. Hence a−1 = 1 · a− ∈ R.
Conversely, suppose that R is a valuation ring and fix a, b ∈ F such that ∼ a|b.
If a = 0 then obviously b|a, so assume that a 6= 0. Then ∼ 1|ba−1 and hence
ba−1 /∈ R. But R is a valuation ring, so ab−1 = (ba−1)−1 ∈ R. Thus 1|ab−1, that
is b|a. Now we are able to state the next theorem:

Theorem 2. Let A be a valuation ring in F . There exists a Krull valuation vA :
F → GA ∪ {∞} such that:

AvA
= A , MvA

= A \ U(A) , UvA
= U(A).

Proof. Fix a valuation ring A and let | be the corresponding divisibility relation
given by

a|b⇔ ba−1 ∈ A.
By the previous remark such relation is total. Consider the quotient additive group
GA = U(F )/U(A). Define the relation ≤⊂ GA ×GA by:

a+ U(A) ≤ b+ U(A) ⇔ a|b.
Since | is reflexive, transitive, total and it agrees qith multiplication, the relation ≤
is also reflexive, transitive, total and it agrees with addition. It is also antisymmetric
- suppose that a+ U(A) ≤ b+ U(A) and b+ U(A) ≤ a+ U(A). Thus a|b and b|a,
so 1|ba−1 and ba−1|1. Therefore ba−1 ∈ A and ba−1 ∈ U(A), which means that
a+ U(A) = b+ U(A). Thus the group GA is an ordered abelian group.

Define the mapping vA : F → GA ∪ {∞} by

vA(a) =
{
a+ U(A), gdy a 6= 0,
∞, gdy a = 0.

We shall show that vA is a valuation which will be called the canonical valuation.
Obviously AvA

= A, since a ∈ Av if and only if vA(a) = a + U(A) ≥ 1 + U(A) =
U(A), that is when 1|a - or in other words when a ∈ A. Similarly we can check that
MvA

= A \ U(A) and UvA
= U(A). It is clear that vA is surjective and vA(a) = ∞

if and only if a = 0. Since vA is a homomorphism from a multiplicative group
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into an additive group, we have vA(ab) = vA(a) + vA(b). It remains to show that
vA(a+ b) ≥ min{vA(a), vA(b)}.

Fix a, b ∈ F . We may assume that vA(a) ≤ vA(b). That means that a+U(A) ≤
b+U(A), that is a|b - hence ba−1 ∈ A. Since A is a commutative ring with identity,
we get 1 + ba−1 ∈ A. Thus 1|1 + ba−1, so U(A) = 1 + U(A) ≤ 1 + ba−1 + U(A).
Finally:

vA(a+ b) = (a+ b) + U(A) = a(1 + ba−1) + U(A) =
= (a+ U(A)) + ((1 + ba−1) + U(A)) ≥
≥ a+ U(A) = vA(a) = min{vA(a), vA(b)}.

�

The previous two theorems in the fact establish an almost bijective relation
between valuations and valuation rings. If v1 : F → G1 ∪ {∞} and v2 : F →
G2∪{∞} are two valuations, then we say that they are equivalent, written v1 ' v2,
if there exists an order preserving group isomorphism g : G1 → G2 such that
v2 = g ◦ v1 (we take g(∞) = ∞). Clearly such relation is an equivalence and we
can state the following result:

Theorem 3. The set of all equivalence classes of the relation ' is in a bijective
correspondence with the family of all valuation rings in F .

Proof. Suppose that v1 : F → G1 ∪ {∞} and v2 : F → G2 ∪ {∞} are equivalent.
Then v1(a) ≥ 0 if and only if v2(a) ≥ 0, so Av1 = Av2 .

Conversely, let A be a valuation ring and let A = Av for some valuation v :
F → G ∪ {∞}. By the previous theorem A = AvA

for the cannonical valuation
vA : F → GA ∪ {∞}. We shall show that v ≈ vA. Observe that v|U(F ) : U(F ) → G
is a surjective homomorphism and that ker v|U(F ) = U(A). By the isomorphism
theorem GA = U(F )/U(A) ' G. If g : GA → G is such isomorphism, then it is
easy to verify that g preserves order and that v = g ◦ vA. �

2. Exponential and discrete valuations. Valuations in a field of
rational functions.

The main goal of this section is to describe all valuations of a field of rational
functions over a given field. We shall introduce the notion of exponential and
discrete valuations and show that all interesting valuations in the rational functins
field behave similarly to the well-known p−adic exponent. This requires some
definitions. First, let G be an ordered abelian group. A subgroup H of G is said
to be the isolated subgroup if:∧

h∈H

{g ∈ G : 0 ≤ g ≤ h} ⊂ H.

Clearly the trivial groups (the zero subgroup and the whole group G) are isolated.
The set G(G) of all isolated subgroups of G is totally ordered by inclusion. The
order type of the set G(G) \ {G} is called the rank of G. If G is a value group of
some valuation v, then the rank of valuation v is the rank of G. Clearly v is a
valuation of rank 0 if and only if G is the zero group. Moreover, v : F → G ∪ {∞}
has rank less or equal that 1 if and only if G is Archimedean, that is:∧

a,b∈G

a, b ≥ 0 ⇒
∨
n∈N

(na ≥ b).
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Indeed, suppose that G = {0}. Then G is Archimedean and clearly the valuation
v has rank 0. Suppose then that G 6= {0}. Fix a inG and let Ha =

⋃
n∈N{b ∈ G :

−na ≤ b ≤ na}. We shall show that Ha is an isolated subgroup of G.
Fix h ∈ Ha. Let n ∈ N be such number that −na ≤ h ≤ na. Let g ∈ G be such

that 0 ≤ g ≤ h. Then −na ≤ 0 ≤ g ≤ h ≤ na and therefore g ∈ Ha.
Now we shall show that if H an isolated subgroup of G and a ∈ H, then Ha ⊂ H.

Indeed, fix an isolated subgroup H and let a ∈ H. Let h ∈ Ha and n ∈ N be
such number that −na ≤ h ≤ na. Obviously na,−na ∈ H. If h > 0, then
since0 ≤ h ≤ na, we have that h ∈ H. If h < 0, then since −na ≤ h ≤ 0, we have
that 0 ≤ −h ≤ na, so −h ∈ H and hence h ∈ H.

Thus Ha is the smallest isolated subgroup containing a. This implies that the
rank of G is equal to 1 if and only if:∧

G3a>0

Ha = G,

which is equivalent to: ∧
G3a>0

∧
G3b>0

∨
n∈N

b ≤ na.

We can also define the rank of a valuation ring. If A is the valuation ring in
F then the set:

B = {B : A ⊂ B, B - piercie waluacyjny}
is totally ordered by the inclusion relation. The order type of the set B \ {F} shall
be called the rank of the ring A. We will show that the rank of valuation is equal
to the rank of associated valuation ring. First we need to know some properties of
isolated groups.

Theorem 4. Let G and G1 be ordered abelian groups, let H be an isolated subgroup
of G.

(1) G/H is ordered by the relation:

g +H ≥ 0 +H ⇔
∨

h∈H

g ≥ h.

The mapping κ : G→ G/H given by:

κ(g) = g +H

is an order-preserving group homomorphism.
(2) If φ : G → G1 is an order-preserving group homomorphism, then kerφ is

an isolated subgroup of G.
(3) If φ : G→ G1 is an order-preserving group homomorphism, then G/ kerφ ∼=

imφ.

Proof. In order to prove (1) define κ : G → G/H by κ(g) = g + H and let S =
{a + G : a ≥ 0}, S = κ(S). It is easy to verify that S is closed under addition.
Observe that S ∩ −S = {0}.

Indeed, fix a1 +H, a2 +H ∈ S and let a1 +H = −(a2 +H). Thus a1, a2 ∈ S and
κ(a1) = −κ(a2), hence κ(a1 + a2) = 0 +H, so a1 + a2 ∈ H. Next, since a1, a2 ≥ 0,
we have that 0 ≤ a1 ≤ a1 + a2 and since H is isolated, then a1 ∈ H. It follows that
a1 +H = κ(a1) = 0 +H.
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In order to check that S ∪−S = G/H fix a+H ∈ G/H. Then a ∈ S or −a ∈ S,
so a+H ∈ S or −(a+H) ∈ S. Therefore S is an ordering in G/H and:

g +H ≥ 0 +H ⇔ κ(g) ∈ S ⇔
∨
a∈S

κ(g) = κ(a) ⇔
∨
a∈S

g − a ∈ H ⇔
∨

h∈H

g ≥ h.

Obviously κ preservs ordering.
To prove (2) fix an arbitrary h ∈ kerφ and let g ∈ G be such that 0 ≤ g ≤

h. Then 0 = φ(0) ≤ φ(g) ≤ φ(h) = 0, so g ∈ H. To finish the proof of the
theorem observe that by the isomorphism theorem there exists an isomorphism
ψ : G/ kerφ→ imφ such that κ ◦ψ = φ. We shall show that ψ is order-preserving.

Fix g ∈ kerφ and let g+kerφ ≥ 0+kerφ. Then there exists h ∈ kerφ such that
g ≥ h. Therefore ψ(g + kerφ) = φ(g) ≥ φ(h) = 0. �

Now we can prove that the rank of a valuation coincides with the rank of a
valuation ring.

Theorem 5. Let F be a field, G an ordered commutative group and v : F →
G∪ {∞} a Krull valuation. Let Av be the valuation ring associated with v and let:

B = {B : Av ⊂ B,B - ring}.

(1) Every element of B is a valuation ring.
(2) Let vB : F → GB ∪ {∞} be a Krull valuation associated with ring B ∈ B

whose value group is GB. Then there exists exactly one group homomor-
phism gB : G → GB such that vB = gB ◦ v, gB is an order-preserving
surjection and ker gB = v(U(B)).

(3) Let G(G) be the family of all isolated subgroups of G. Then the mapping
Φ : B → G(G) given by:

Φ(B) = ker gB

is an order-preserving bijection.

Proof. (1) is trivial: for B ∈ B fix a ∈ F and suppose that a /∈ B. Then also
a /∈ Av, hence a−1 ∈ Av ⊂ B.

To prove (2) fix B ∈ B and observe that U(Av) ⊂ U(B). The valuations v and vB

determine the group homomorphisms v : U(F ) → G and vB : U(F ) → G such that
U(Av) = ker v, U(B) = ker vB . By the isomorphism theorem there exists exactly
one homomorphism gB : G→ GB such that vB = gB ◦ v. Moreover im gB = im vB

and ker gB = v(ker vB) = v(U(B)). Since vB is surjective it follows that also gB is
a surjection. It remains to show that gB is order-preserving.

Fix g ∈ G and let g ≥ 0. Since v is a surjection, there exists a ∈ F such that
g = v(a). Thus, since v(a) = g ≥ 0, we have that a ∈ Av ⊂ B. Suppose that
gB(g) < 0. Then 0 > gB(g) = gB(v(a)) = vB(a), so a /∈ B - a contradiction.

In order to prove (3) observe that for all B ∈ B the group ker gB is isolated, so
Φ is well-defined. We shall pick an inverse function to Φ. Fix H ∈ G(G). By the
previous theorem G/H is ordered. Define κH : G → G/H by κH(g) = g +H and
wH : F → G/H ∪ {∞} by wH = κH ◦ v. It is easy to verify that wH is a Krull
valuation, so let BH be a valuation ring corresponding to wH . Since for a ∈ Av

wH(a) = κH ◦ v(a) and κH preserves an order, we get that Av ⊂ BH . Thus the
mapping Ψ : G(G) → B given by:

Ψ(H) = BH
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is well-defined. We shall show that Ψ ◦ Φ = id B.
Fix B ∈ B, let vB : F → GB ∪ {∞} be the valuation associated with B, let

gB : G→ GB be such unique homomorphism that vB = gB ◦ v, gB is a surjection,
preserves an order and ker gB = v(U(B)). The mapping gB : G/ ker gB → GB

given by gB(g + ker gB) = gB(g) is an isomorphism. Define the functions κker gB
:

G → G/ ker gB by κker gB
(g) = g + ker gB and wker gB

: F → G/ ker gB ∪ {∞} by
wker gB

= κker gB
◦ v. Obviously wker gB

is a valuation. Since vB = gB ◦ v, we have
that vB = gB ◦ wker gB

. By the theorem that describes the relationship between
valuations and valuation rings, the valuation wker gB

corresponds to B.
Conversely, we shall show that Ψ◦Φ = id G(G). FixH ∈ G(G) and let BH = Ψ(H)

be such valuation ring corresponding to H that Av ⊂ BH . Let vBH
: F → GBH

∪
{∞} be the valuation associated with the ring BH . Define the mappings κH : G→
GH by κH(g) = g+H and wH : F → G/H ∪ {∞} by wH = κH ◦ v. Obviously wH

is a valuation. By the theorem describing the correspondence between valuations
and valuation rings there exists an isomorphism τ : G/H → GBH

such that vBH
=

τ ◦ wH . Thus g : G → GBH
given by g = τ ◦ κH is such homomorphism that

ker g = H and vBH
= g ◦ v. Hence g = gBH

and H = ker gBH
. �

Before we define discrete and exponential valuations, we need to know something
about ordered Archimedean groups. We shall prove the following result:

Theorem 6 (Hölder). Every ordered Archimedean commutative group is isomor-
phic to some subgroup of the additive group of real numbers.

Proof. Let G be such ordered abelian group that
∧

g,h∈G g, h ≥ 0 ⇒
∨

n∈N(ng ≥ h).
Fix g inG and let g ≥ 0. Define the mapping Φ : G→ R by:

Φ(h) = inf{m
n
∈ Q : mg > nh,m, n ∈ Z}.

Observe that Φ is well-defined. Indeed, the set
∧

a,b∈G a, b ≥ 0 ⇒
∨

n∈N(na ≥ b) is
nonempty; because G is Archimedean, there exists p ∈ Z such that pg > h. Next,
this set has a lower bound; since G is Archimedean, there is q ∈ Z such that g < qh.
Now, if mg > nh, then m

n ≥ 1
q - if m

n < 1
q , then mq < n, so mqg < ng < nqh, hence

mg < nh - a contradiction.
We shall show that Φ is a homomorphism. Fix h, k ∈ G and let m,n, p, q ∈ Z be

such that mg > nh and pg > qk. Since G is abelian (mq + np)g = mqg + npg >
nqh+qhk = nq(h+k). Thus m

n + p
q = mq+np

nq ≥ Φ(h+k). Suppose that Φ(h+k) <
Φ(h) + Φ(k). Then we may pick numbers m,n, p, q ∈ Z such that m

n < Φ(h),
p
q < Φ(k) and Φ(h+ k) < m

n + p
q < Φ(h) + Φ(k). Hence mg ≤ nh and pg ≤ qk and

sinceG is commutative, this yields (mq+np)g = mqg+npq ≤ nqh+nqk = nq(h+k).
Thus m

n + p
q = mq+np

nq < Φ(h+ k) - which is a contradiction.
It is obvious that Φ is order-preserving, so it remains to show that Φ is one-

to-one. Fix h ∈ G. If h > 0, then there exists n ∈ N such that nh > g, so
Φ(h) ≤ 1

n > 0. If h < 0, then there exists n ∈ N such that −nh > g, so −g > nh,
and thus Φ(h) ≤ − 1

n < 0. Therefore kerΦ = {0}. �

Now we can introduce the notion of exponential valuations. The valuation
whose value group is a subgroup of the additive group of real numbers is called the
exponential valuation. Observe that - according to the above theorems - for a given
valuation v : F → G ∪ {∞} the following four conditions are equivalent:

(1) v has rank less or equal than 1,
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(2) the valuation ring Av has rank less or equal that 1,
(3) G is Archimedean,
(4) v is an exponential valuation.

An exponential valuation whose value group is a discrete subspace of R (with respect
to the usual topology in R) is called the discrete valuation. We need some more
information about discrete subspaces of R. Let G be a subgroup of R. We shall
prove that the following conditions are equivalent:

(1) G is a discrete subspace of R,
(2) G is not dense in R,
(3) {g ∈ G : g > 0} has a minimal element,
(4) G = ρ · Z for some ρ > 0.

(1) ⇒ (2): Suppose that G is a discrete subspace of R. Then {{a} : a ∈ G} is a
basis of the topology in G and {(b, c) : b, c ∈ Q, b < c} is a basis of the topology in
R. On the other hand the topology in G is induced from R, so:∧

a∈G

∨
b,c∈Q

{a} = (b, c).

So if a ∈ G, then we may pick b ∈ Q such that (b, a) ∩ G = ∅. Thus G cannot be
dense in R.

(2) ⇒ (3): suppose that {g ∈ G : g > 0} has no minimal element. We shall
show that G is dense in R. Fix (a, b) ⊂ R. We may assume that a, b > 0. Since
{g ∈ G : g > 0} has no minimal element, we may choose g ∈ G such that 0 < g <
b−a
2 . Since in the group R the Archimedean rule holds, there exists n ∈ Z such

that ng < b ≤ (n + 1)g.Observe that ng > a - otherwise, (n + 1)g < a + g < b, a
contradiction.

(3) ⇒ (4): let g0 be the minimal element of the set {g ∈ G : g > 0}. Fix
g ∈ G. By the Archimedean rule applied for R, there exists n ∈ Z such that
ng0 ≤ g < (n + 1)g0, so 0 ≤ g − ng0 < g0. By the choice of g0, g = ng0, so
G = g0 · Z.

(4) ⇒ (1): observe that for all a ∈ G(a − ρ, a + ρ) ∩ G = {a}. Therefore
{{a} : a ∈ G} is a basis for the topology of G.

We will try to simplify the notion of discrete valuations. A discrete valuation
is said to be the normalized discrete valuation when its value group is Z. Let
F be a field, G1 and G2 ordered abelian subgroups of R and v1 : F → G1 ∪ {∞},
v2 : F → G2 ∪ {∞} valuations. Clearly, if there exists a real number b ∈ R such
that v1(a) = b · v2(a) for all a ∈ F , then v1 and v2 are equivalent. Actually, the
converse is also true; let φ : G1 → G2 be such group isomorphism that v1 = φ ◦ v2.
By the previous remark, G1 = ρ1 · Z, G2 = ρ2 · Z. We shall show that φ(ρ1) = ρ2.

Suppose that φ(ρ1) = nρ2 for some n ∈ N\{1}. Since φ is an isomorphism, there
exists m ∈ N such that φ(mρ1) = (n − 1)ρ2. But φ(mρ1) = φ(ρ1) + . . . + φ(ρ1) =
mnρ2. Hence mn = n1, that is n(1−m) = 1, so n = 1 and m = 0, a contradiction.

Therefore φ(mρ1) = mρ2 = ρ2
ρ1
mρ1 and taking b = ρ2

ρ1
we obtain v1(a) =

φ(v2(a)) = ρ2
ρ1
v2(a).

This remark shows that every discrete valuation is equivalent to exactly one
normalized discrete valuation. Now we are going to describe the set of all normalized
discrete valuations in the field of rational functions. First we state a bit more general
result.
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Theorem 7. Let R be a unique factorization domain, let F be the field of fractions
of R, let P be the set of representatives of irreducible elements in R (that is every
irreducible element in R is associated with exactly one P ∈ P).

(1) For every P ∈ P the mapping vP : F → R ∪ {∞} given by:

vP (a) =
{
∞ if a = 0,
nP if a = u

∏
Q∈P Q

nQ , nQ ∈ Z, u ∈ U(R),

is a normalized discrete valuation in F . Moreover:

AvP
= R(P ) ⊃ R, MvP

= (P ) w AvP
, (P ) = MvP

∩R w R, R/(P ) = κvP
(R) ⊂ FvP

,

where κvP
: AvP

→ FvP
is a cannonical epimorphism given by:

κvP
(a) = a+MvP

.

(2) R =
⋂

P∈P AvP
.

(3) For all a ∈ F the set:

{P ∈ P : vP (a) 6= 0}

is finite.
(4) If R is a principle ideal domain, then for all P ∈ P κvP

(R) = FvP
. More-

over, if v : F → R ∪ {∞} is a non-trivial exponential valuation such that
R ⊂ Av, then v is equivalent to exactly one valuation of the form vP for
some P ∈ P.

Proof. First we shall prove (1). It is trivial to check that vP is a valuation. We
shall show that R ⊂ AvP

. Indeed, fix a ∈ R. Then a = u
∏

Q∈P Q
nQ , nQ ∈ Z,

u ∈ U(R) or a = 0. Thus vP (a) = nP ≥ 0 or vP (a) = ∞ > 0, that is a ∈ AvP
.

Next, we shall prove that AvP
= R(P ). Indeed:

R(P ) = {s
t

: s, t ∈ R, t /∈ (P )} = {s
t

: s, t ∈ R,P - t} = {s
t

: s, t ∈ R, vP (
s

t
) ≥ 0} = AvP

.

In order to prove that in the ring AvP
the identity MvP

= (P ) holds, let us observe
that:

MvP
= {s

t
: s, t ∈ R, vP (

s

t
) > 0} = {s

t
: P - t, P |s} = (P ).

To prove that (P ) = MvP
∩R holds in the ring R note that:

(P ) = {aP : a ∈ R} = {a
1
· P : a ∈ R} = MvP

∩R.

Finally, the identity R/(P ) = κvP
(R) is true, since:

R/(P ) = {a+ (P ) : a ∈ R} = {a+MvP
: a ∈ R} = κvP

(R).

The inclusion κvP
(R) ⊂ FvP

is obvious. (2) is true since R ⊂ AvP
for all P ∈ P,

and (3) follows directly from the definiton of a unique factorization ring and a field
of fractions. It remains to show (4).

Suppose that R is a principal ideal domain. First we shall show that κvP
(R) =

FvP
. To do so, let us fix a+MvP

∈ FvP
. There exists an element s

t ∈ AvP
= R(P ),

s, t ∈ R, t /∈ (P ) such that κvP
= a + MvP

. Since R is a principal ideal domain
and t /∈ (P ), we have that NWD(P, t) = 1, so there exist c, d ∈ R such that
cP + td = 1. Thus s

t − sd = s
t (1−dt) = s

t (cp+ td− td) = s
t cp ∈ (P ) = MvP

. Hence
κvP

( s
t − sd) = κvP

( s
t )− κvP

(sd) = MvP
, that is κvP

( s
t ) = κvP

(sd) = a+MvP
and

sd ∈ R.
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Let v : f → R ∪ {∞} be a non-trivial exponential valuation such that R ⊂ Av.
Then Mv is the maximal ideal in the ring Av, so it is a prime ideal. Hence Mv∩R is
a prime ideal in the ring R, so Mv ∩R = (P ) for some P ∈ P. Since R is a principal
ideal domain, Mv ∩ R is also maximal and thus non-zero. Let v(P ) = ρ. Since v
is non-trivial, we have that P /∈ U(Av) and hence P /∈ U(R), which implies that
ρ > 0. Thus v(P ) = ρ = ρvP (P ). Moreover, for a ∈ R \ (P ) v(a) = 0 = ρvP (a).
Since any non-zero element x ∈ F is of the form x = Pm a

b , m ∈ Z, a, b ∈ R \ (P ),
we have:

v(x) = v(Pm) + v(a)− v(b) = mv(P ) = mρ = ρvP (x),
which means that v is equivalent to vP . Since vP and vQ for P 6= Q, P,Q ∈ P are
not equivalent to each other, the choice of P ∈ P is unique. �

As a corollary we shall state the following theorem describing normalized expo-
nential valuations of a field of rational functions.

Theorem 8. Let F be a field, z a transcendental element over F and let us consider
the field F (z). Let P be the set of all irreducible polynomials in the ring F [X], let
R = F [z]. For an arbitrary P ∈ P define the mapping vz,P : F (z) → R ∪ {∞} by:

vz,P (a) =
{
∞ if a = 0,
nP if a = u

∏
Q∈P Q(z)nQ , nQ ∈ Z, u ∈ U(R).

Define also the function vz,∞ : F (z) → R ∪ {∞} by:

vz,∞(a) =

{
∞, if a = 0,
deg g − deg f, if a = f(z)

g(z) , f, g ∈ F [X] \ {0}.

We set deg∞ = 1.
(1) The mapping

P 7→ vz,P

establishes a bijection between the set P∪{∞} and the set of all normalized
exponential valuations of the field F (z) such that v(a) = 0 for a ∈ F . In
particular, every non-trivial exponential valuation in F (z) is discrete.

(2)
⋂

P∈P∪{∞}Avz,P
= F .

(3) For every P ∈ P ∪ {∞} the residue field Fvz,P
of the valuation vz,P is a

simple extension of the field F (more precisely - a simple extension of an
isomorphic image of the field F , κvz,P

(F ), where κvz,P
: Avz,P

→ Fvz,P
is

the cannonical epimorphism). Moreover [Fvz,P
: κvz,P

(F )] = degP .

Proof. In order to prove (1) we first observe the trivial fact that vz,∞ is a discrete
valuation. By the previous results it suffices to show that if v : F (z) → R ∪ {∞}
is such exponential valuation that R * Av, then v is equivalent to the valuation
vz,∞. Since R = F [z] * Av and F ⊂ Av (because v(a) = 0 for a ∈ F ), we
have that z /∈ Av. Thus z−1 ∈ Av. Let v(z−1) = ρ. Obviously ρ > 0 - if
ρ = 0, then v(z) = v(z−1) = 0 and z ∈ Av. In particular v(z) = −ρ. Let
f = anX

n + . . .+ a0 ∈ F [X]. Then, since v(akz
k) = −ρk 6= ρl = v(alz

l) for k 6= l,
we get:

v(f(z)) = v(anz
n+. . .+z0) = min{v(anz

n), . . . , v(a0)} = min{−nρ, . . . ,−ρ, 0} = −nρ.

Thus, when x = f(z)
g(z) ∈ F (z), we obtain:

v(x) = v(f(z))− v(g(z)) = −deg fρ+ deg gρ = ρvz,∞(x).
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It is clear that
⋂

P∈P∪{∞}Avz,P
=

⋂
P∈P Avz,P

∩ Avz,∞ = F [z] ∩ Avz,∞ = F ,
which proves (2), so it remains to show (3). Fix P ∈ P and observe that κvz,P

�F :
Avz,P

→ Fvz,P
is - as a non-trivial field homomorphism - an embedding, so F ∼=

κvz,P
(F ). Since F [z] is a principle ideal domain, we have that Fvz,P

= κvz,P
(F [z]) =

κvz,P
(F )[κvz,P

(z)]. Obviously if P = anX
n + . . . + a0, then κvz,P

(an)Xn + . . . +
κvz,P

(a0) is a minimal polynomial for κvz,P
(z) and [Fvz,P

: κvz,P
(F )] = n = degP .

When P = ∞, then:

vz,∞(
anz

n + . . .+ a0

bmzm + . . .+ b0
) = m−n = vz−1,X(zn)−vz−1,X(zm) = vz−1,X(

anz
n + . . .+ a0

bmzm + . . .+ b+ 0
)

and the result follows from the previous part of proof and the remark that deg∞ =
degX = 1. �

Before we go to further theorems, we shall illustrate the developed theory with
some examples.

(1) Let F = C. Then the set P of irreducible polynomials in C[X] is just the
set of linear polynomials of the form:

{X − a : a ∈ C}.

The construction of valuation is clear, the residue fields associated with
valuations derived from polynomials X − a are just the complex numbers,
since [Cvz,X−a

: κvz,X−a
(C)] = deg(X − a) = 1. Similarly the residue field

of the valuation vz,∞ is C.
(2) Let F = R. Then the set P of irreducible polynomials in R[X] consists of

the polynomials of the form:

X − a for some a ∈ R or (X − a)2 + b2 for some a, b ∈ R.

Indeed, since C ⊃ R is an extension of degree 2 and C is algebraically
closed, every polynomial decomposes into irreducible factors of degree 1 or
2. If X2 − 2aX + c is an irreducible polynomial, then 4a2 − 4c < 0, so
c − a2 > 0. Moreover X2 − 2aX + c = (X − a)2 + (c − a)2, thus taking
c− a2 = b2 we get the polynomial of the form (X − a)2 + b2.

Next, we have that:

[Rvz,X−a
: κvz,X−a

(R)] = deg(X − a) = 1

so the residue field Rvz,X−a
is just R. Similarly Rvz,∞ = R and since:

[Rvz,(X−a)2+b2
: κvz,(X−a)2+b2

(R)] = deg((X − a)2 + b2) = 2

we have Rvz,(X−a)2+b2
= C. Since the polynomials X − a and the element

∞ corresponds with points a ∈ R and the point ”at infinity”, we shall often
call the unique maximal ideals associated with valuation rings derived from
valuations related with such polynomials to be the real places of the field
R(X).

(3) Let F = Q. Then the set P of irreducible polynomials may contain polyno-
mials of any finite degree, so the residue fields associated with valuations
derived from the polynomials in P are the finite extensions of the field Q,
that is - the algebraic number fields. By the primitive element theorem,
such fields are simply generated, so we may associate with each valuation
in Q(X) an algebraic number α ∈ C.
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Now we want to show that all ”interesting” valuations in a field of rational
functions can be described in the above manner. In order to do that we need the
so called Krull’s intersection theorem. The nice and short proof given here is taken
from [3].

Theorem 9 (Krull). Let R be a noetherian ring and I an ideal in R. Then⋂∞
n=1 I

n = (0) if and only if no element of the set {1− a : a ∈ I} is a zero-divisor.

Proof. (⇒) Suppose that 1− z, z ∈ I is a zero divisor. Then (1− z)y = 0 for some
y 6= 0. This implies that y = zy = z2y = . . . = zny, n ∈ N, that is y ∈

⋂∞
n=1.

(⇐) Since R is noetherian, the ideal I is finitely generated and we may take
I = (a1, . . . , ak) for some a1, . . . , ak ∈ R. Since b ∈

⋂∞
n=1 I

n, for every n ∈ N there
is a homogeneous polynomial Pn(X1, . . . , XK) of degree n such that:

b = Pn(a1, . . . , ak).

Now define the ideals Jn = (P1, . . . , Pn). Clearly the family {Jn : n ∈ N} forms an
ascending chain of ideals in the ring R[X1, . . . , Xk]. By the Hilbert basis theorem,
the ring R[X1, . . . , Xk] is also noetherian, so there exists a number m ∈ N such
that Jm = Jm+1. That means, that:

Pm+1 = QmP1 + . . .+Q1Pm

whereQi are homogeneous polynomials of degree i. SubstitutingX1 = a1, . . . , Xk =
ak gives:

b = b(Q1(a1, . . . , ak) + . . . |Qm(a1, . . . , ak))

or equivalently

b · [1− (Q1(a1, . . . , ak) + . . . |Qm(a1, . . . , ak))] = 0.

Qi are homogeneous of positive degree, so Qi(a1, . . . , ak) ∈ I. Since I is a proper
ideal, 1 /∈ I, which proves that 1 − (Q1(a1, . . . , ak) + . . . |Qm(a1, . . . , ak)) 6= 0. By
our assumption such element is not a zero divisor, so b = 0. �

As a corollary observe that if R is a noetherian domain and I an ideal in R, then⋂∞
n=1 = (0). Now we shall prove the following result, which characterizes discrete

valuation rings.

Theorem 10. Let R be a local domain, let K be its field of fractions. Then the
following are equivalent:

(1) R is a discrete valuation ring in K,
(2) R is a noetherian valuation ring in K,
(3) R is a principal ideal domain,
(4) R is a noetherian ring and its only maximal ideal is a principal ideal,
(5) the only maximal ideal I of R is principal and

⋂∞
n=1 I

n = (0).

Proof. (1) ⇒ (2): Suppose that R is a local discrete valuation domain. We may
assume that R is a normalized valuation ring. We shall show that R is a principal
ideal domain (so it is noetherian). Let v : K → Z be such valuation in a field K,
that R = {a ∈ K : v(a) ≥ 0}. Let p ∈ K be such element that v(p) = 1. If r ∈ R,
then v(r) = k = kv(p) = v(pk) for some k ∈ N. Thus v(r) − v(pk) = v( r

pk ) = 0
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and hence r
pk ∈ U(R), so r = upk for some u ∈ U(R). Therefore (r) = (pk). Fix an

ideal I C R, {0} ( I ( R. Then:

I =
⋃

r∈I\{0}

(r) =
⋃

r∈I\{0}

(pv(r)).

Obviously L = {(pv(r)) : r ∈ I \ {0}} is a chain of ideals and if v(r1) ≤ v(r2), then
pv(r1)|pv(r2) and then (pv(r1)) ⊃ (pv(r2)). Since I is a proper ideal, such chain has
an upper bound. Therefore there exists r0 ∈ I \ {0} such that v(r0) = min{v(r) :
r ∈ I \ {0}}. This implies:

I =
⋃

r∈I\{0}

(pv(r)) = (pv(r0)).

(2) ⇒ (3): Suppose that R is a noetherian valuation ring. We shall show that R
is a principal ideal domain. Let I be an ideal in the ring R. Then I = (a1, . . . , am).
Let v : K → G, be such that R = {a ∈ K : v(a ≥ 0)}, where G is some ordered
abelian group. In the set {v(a1), . . . , v(am)} there exists the least element, say
v(a1). Then v(ai)− v(a1) = v( ai

a1
) ≥ 0 which implies ai

a1
∈ R, that is ai = uia1 for

some ui ∈ R, i ∈ {2, . . . ,m}. That means a1, . . . , am ∈ (a1), so I ⊂ (a1). Obviously
the second inclusion is always true, so I = (a1).

(3) ⇒ (4) is clear and (4) ⇒ (5) is just a corollary from the Krull’s intersection
theorem.

(4) ⇒ (5): Suppose that I = (p) is the only maximal ideal in the ring R and that⋂∞
n=0 I

n = (0). We shall show that R is a discrete valuation ring in the field K. Fix
x ∈ R \ {0}. Since

⋂∞
n=0 I

n = (0), the set {n ∈ N : x ∈ In} = {n ∈ N : x ∈ (pn)}
has a maximum. Define the function v : R→ N ∪ {∞} by:

v(x) =
{
∞, if x = 0,
max{n ∈ N : x ∈ (pn)}, if x 6= 0.

We shall show that v(x + y) ≥ min{v(x), v(y)}, x, y ∈ R. If x = 0 or y = 0 or
x = y = 0, this is obvious. Suppose that x 6= 0 and y 6= 0. Let k, l, m be the
smallest numbers such that x+ y ∈ (pk), x ∈ (pl), y ∈ (pm). We may assume that
l ≤ m. Then (pl) ⊃ (pm), so x, y ∈ (pl) and hence x+ y ∈ (pl). Thus l ≤ k and so
min{l,m} ≤ k.

We shall show that v(xy) = v(x) + v(y). If x = 0 or y = 0 or x = y = 0, this
is obvious. Suppose that x 6= 0 and y 6= 0. Since x ∈ (pv(x)) i y ∈ (pv(y)), we
have that x = u1p

v(x) and y = u2p
v(y), u1, u2 ∈ R. Thus xy = u1u2p

v(x)+v(y), so
xy ∈ (pv(x)+v(y)) and hence v(xy) ≥ v(x) + v(y). If v(xy) > v(x) + v(y), then xy ∈
(pv(x)+v(y)+1), so x + y = u3pp

v(x)+v(y). On the other hand xy = u1u2p
v(x)+v(y),

so u1u2p
v(x)+v(y) = u3pp

v(x)+v(y), thus pv(x)+v(y)(u1u2 − u3p) = 0 and since R
is a domain and p 6= 0, this implies that u1u2 − u3p = 0, so u1u2 = u3p, that
is u1u2 ∈ (p). Since (p) is maximal, it is prime. Thus u1 ∈ (p) or u2 ∈ (p)
- we may assume that u1 ∈ (p). Then u1 = u4p for some u4 ∈ R, and hence
x = u1p

v(x) = u4p
v(x)+1, so x ∈ (pv(x)+1) - which contradicts the definition of v.

Define the mapping ṽ : K → Z ∪ {∞} by:

ṽ(
a

b
) = v(a)− v(b).

It is easy to check that ṽ is a discrete valuation. Clearly R ⊂ Aṽ, so it remains to
show the other inclusion. Fix x

y ∈ Aṽ and let x = u1p
v(x), y = u2p

v(y) for some
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u1, u2 ∈ R. If ṽ(x
y ) = n ≥ 0, then v(x) − v(y) = n, so v(x) = v(y) + n. Thus

x = u1p
v(x) = u1p

v(y)+n, hence xu2 = u1u2p
v(y)pn = u1yp

n, that is x
y = u1

u2
pn.

Moreover, observe that u1
u2
∈ R. Indeed, suppose that u1

u2
/∈ R. Since u1 ∈ R, we

get u−1
2 /∈ R. But u2 ∈ R, so u2 /∈ U(R). That means that u2 ∈ I = (p), that is

u2 = u3p for some u3 ∈ R. Then y = u2p
v(y) = u3p

v(y)+1, which contradicts the
definition of v. Thus u1

u2
∈ R, pn ∈ R which gives x

y ∈ R. �

Next we shall define the class of algebraic function fields and show that all
valuation rings in such fields are characterized in the way described before. The
algebraic function field in one variable over the field K is the field F such that
F ⊃ K and F ⊃ K(x) is a finite extension for some element x ∈ F transcendental
over K. The algebraic closure K̂ of the field K in F shall be called the field of
constans. Before we prove our main result we need some lemmas.

Lemma 1. Let F be an algebraic function field over K. Then z ∈ F is transcen-
dental over K if and only if [F : K(z)] <∞.

Proof. (⇐): Suppose that [F : K(z)] < ∞ and z is algebraic over K. Then
[F : K] = [F : K(z)][K(z) : K] < ∞, so the extension F ⊃ K is finite - a
contradiction.

(⇒): Suppose that F ⊃ K(x) is finite and x and z are transcendental over K.
Consider the extensions K(x) ⊂ K(z, x) ⊂ F . Since K(x) ⊂ F is a finite extension,
we have that K(x) ⊂ K(z, x) and K(z, x) ⊂ F are also finite. Thus z is algebraic
over K(x). We shall show that x is algebraic over K(z).

Since z is algebraic over K(x), there exists f ∈ K(x)[X] such that f(z) = 0.
Since K(x) = (K[x]), we may suppose that f ∈ K[x][X]. Let F (t,X) ∈ K[t,X] be
such polynomial that F (x,X) = f(X). Since x is transcendental over K, we have
that F is non-zero. Let g(t) = F (t, z) ∈ K(z)[t]. Since z is transcendental over K,
g is non-zero. Moreover, g(x) = F (x, z) = f(z) = 0. So x is algebraic over K(z).

Consider the extensions K(z) ⊂ K(x, z) ⊂ F . Since K(z) ⊂ K(z, x) is algebraic
and finitely generated, it is finite. Since K(z, x) ⊂ F is finite, K(z) ⊂ F is also
finite. �

Lemma 2. Let F be an algebraic function field over K, let R be such valuation
ring in F that K ( R ( F . Then:

K̂ ⊂ R and K̂ ∩ (R \ U(R)) = {0}.

Proof. Fix z ∈ K̂ and suppose that z /∈ R. Then z−1 ∈ R. Since z is algebraic over
K, we have that z−1 is algebraic over K, so for some a1, . . . , ar ∈ K:

ar(z−1)r + . . .+ a1z
−1 + 1 = 0,

hence −1 = z−1(ar(z−1)r−1 + . . . + a1). Thus z = −(ar(z−1)r−1 + . . . + a1) ∈
K(z−1) ⊂ R, so z ∈ R - a contradiction.

Suppose that there exists a 6= 0 such that a ∈ K̂ ∩ (R \U(R)). Since K̂ is a field,
we also have that a−1 ∈ K̂ ⊂ R. Since R \ U(R) is an ideal in R, we have that
aa−1 ∈ R \ U(R), so 1 ∈ R \ U(R), which is a contradiction. �

Lemma 3. Let F be an algebraic function field over K, let R be such valuations
ring in F that, K ( R ( F . Let 0 6= x ∈ R \ U(R) and let x1, . . . , xn ∈ R \ U(R)
be such elements that x1 = x and xi ∈ xi+1R \ U(R), i ∈ {1, . . . , n − 1}. Then
n ≤ [F : K(x)] <∞.
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Proof. By the previous lemma x is not algebraic over K, so it is transcendental.
By the first lemma [F : K(x)] <∞. It remains to show that x1, . . . , xn are linearly
independent over K(x). Suppose that there exist f1, . . . , fn ∈ K(x) not all zero
such that:

f1x1 + . . .+ fnxn = 0.

The elements fi are rational functions in one indeterminate x. Multiplying both
sides of the above equality by the common denominator of f1, . . . , fn we may assume
that f1, . . . , fn ∈ K[x]. Eventually dividing by the appropriate power of x we may
also assume that not all fi are divisibe by x. Let ai = fi(0), i ∈ {1, . . . , n}, be the
free coefficients of the polynomials f1, . . . , fn. Let aj be the last non-zero element
in the sequence a1, . . . , an. Then:

−fjxj = f1x1 + . . .+ fj−1xj−1 + fj+1xj+1 + . . .+ fnxn.

Moreover, by the choice of j we get fi = xgi for some gi ∈ K[x], i ∈ {j + 1, . . . , n}.
Dividing both sides of the above equality by xj yields:

−fj = f1
x1

xj
+ . . .+ fj−1

xj−1

xj
+ xgj+1

xj+1

xj
+ . . .+ xgn

xn

xj
.

Since x = x1 ∈ R \ U(R) ⊂ R and K ⊂ R, we get f1, . . . , fn ∈ K[x] ⊂ R. Since
xi ∈ xi+1R \ U(R), i ∈ {1, . . . , n − 1}, we have in particular xi ∈ xjR \ U(R) for
i ∈ {1, . . . , j−1}. Hence xi

xj
∈ R\U(R) and so fi

xi

xj
∈ R\U(R) for i ∈ {1, . . . , j−1}.

Similarly x
xj

= x1
xj
∈ R \ U(R) and since xi, gi ∈ R for i ∈ {j + 1, . . . , n}, we have

that x
xj
gixi ∈ R \ U(R) for i ∈ {j + 1, . . . , n}. Therefore all summands on the

right side belong to the ideal R \ U(R), so fj ∈ R \ U(R). On the other hand
fj = aj + xgj , where gj ∈ K[x] ⊂ R and x ∈ R \ U(R) (so xgj ∈ R \ U(R)). Thus
aj = fj − xgj ∈ R \U(R). But also aj ∈ K i aj 6= 0, which is contradicts the result
of the previous lemma. �

Now we may state the final result of this section:

Theorem 11. Let F be an algebraic function field over K, let R be such valuation
ring in F that K ( R ( F .

(1) R \ U(R) is a principal ideal.
(2) If R\U(R) = (p), then every element z ∈ F \{0} has a unique representation

of the form z = pnu for some n ∈ Z and u ∈ U(R).
(3) R is a principal ideal domain.

Proof. (1): Suppose that R \ U(R) is not principal and fix an element 0 6= x1 ∈
R\U(R). Since R\U(R) 6= (x1), there exists x2 ∈ R\U(R)\ (x1). Thus x2x

−1
1 /∈ R

(otherwise x2 ∈ x1R = (x1)), so x1x
−1
2 = (x2x

−1
1 )−1 ∈ R \ U(R), hence x1 ∈

x2R \ U(R). By induction we may pick the infinite sequence x1, x2, . . . of the
elements of the ideal R \ U(R) such that xi ∈ xi+1R \ U(R) for i ∈ N, which is a
contradiction with the previous lemma.

(2): Fix z ∈ F . Since z ∈ R or z−1 ∈ R, we may assume that z ∈ R. If z ∈ U(R),
then we may take n = 0 and u = z. So we may restrict ourselves to the case when
z ∈ R \ U(R). Since R \ U(R) = (p), we get z = plx for x ∈ R. Observe, that the
sequence z, tl−1, tl−2, . . . , t satisfies the assumptions of the previous lemma, so its
length is bounded. Let k = max{l : z = plx, x ∈ R} - we may assume that z = pkx.
It remains to check whether x ∈ U(R) is true - otherwise x ∈ R \ U(R) = (p), so
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x = py for some y ∈ R, so z = pk+1y, which contradicts the definitoon of k. It is
trivial to check that such presentation is unique.

(3): We shall show that if (0) 6= I C R, then there exists n ∈ N such that
I = (pn). Fix an ideal I, where we may assume that I ( R - otherwise we take
n = 0 and get R = (1). Since R\U(R) is a maximal ideal, we see that I ⊂ R\U(R).
Note that if z ∈ I and z = pku, k > 0, u ∈ U(R) is the decomposition obtained in
(2), then pk = zu−1 ∈ I, so the set:

{k : pk ∈ I}
is non-empty. As a subset of the set of positive integers it has the smallest element,
say n. We shall see that I = (pn).

Obviously (⊃), because pn ∈ I. To proove (⊂) fix z ∈ I and let z = pku, k > 0,
u ∈ U(R). Thus k ≥ n, that is pk−n ∈ R. Hence z = pku = pnpk−nu ∈ (pn). �

Thus we have described almost all valuations in the field F (X). If v : F (X) →
G ∪ {∞} is a non-trivial valuation such that v(a) = 0 for a ∈ F and R is its
valuation ring, then F ( R ( F (X). So R is a principal ideal domain and hence
it is a discrete valuation ring in its field of fractions. Since v is non-trivial, we may
assume that X ∈ R, so F [X] ⊂ R and F (X) must be the field of fractions for R
(as the smallest field containing F [X] and - consequently - R). Since v is discrete,
G ∼= Z and v could be described as in the theorem 8.

3. Baer-Krull correspondence

Recall that a semiordering of a field F is the subset S ⊂ F such that:
(1)

∧
p1,p2∈S p1 + p2 ∈ S,

(2)
∧

p∈S

∧
a∈F a

2 · p ∈ S,
(3) S ∩ −S = {0},
(4)

∧
a∈F a ∈ S ∨ −a ∈ S.

For the given semiordering S of the field F we define:

a ≥S b iff. a− b ∈ S
and

a >S b iff. ∼ b ≥S a.

Clearly the relation ≥⊂ F × F satisfies:
(1)

∧
a∈F a ≥ a,

(2)
∧

a,b∈F a ≥ b ∧ b ≥ a⇒ a = b,
(3)

∧
a,b,c∈F a ≥ b ∧ b ≥ c⇒ a ≥ c,

(4)
∧

a,b∈F a ≥ b ∨ b ≥ a ∨ a = b,
(5)

∧
a,b,c∈F a ≥ b⇒ a+ c ≥ b+ c,

(6)
∧

a,b,c∈F a ≥ b⇒ a · c2 ≥ b · c2,
(7) ∼ 0 ≥ 1

if and only if the set S = {a ∈ F : a ≥ 0} is a semiordering. Similarly, an ordering
is the set P ( F such that:

(1)
∧

p1,p2∈P p1 + p2 ∈ P ,
(2)

∧
p1,p2∈P p1 · p2 ∈ P ,

(3)
∧

a∈A a ∈ P ∨ −a ∈ P ,
(4) P ∩ −P = {0}.
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We denote:
a ≥P b if a− b ∈ P.

and - as above - observe that the relation ≥⊂ F × F satisfies:
(1)

∧
a∈F a ≥ a,

(2)
∧

a,b∈F a ≥ b ∧ b ≥ a⇒ a = b,
(3)

∧
a,b,c∈F a ≥ b ∧ b ≥ c⇒ a ≥ c,

(4)
∧

a,b∈F a ≥ b ∨ b ≥ a ∨ a = b,
(5)

∧
a,b,c∈F a ≥ b⇒ a+ c ≥ b+ c,

(6)
∧

a,b∈F

∧
F3c≥0 a ≥ b⇒ a · c ≥ b · c,

if and only if the set P = {a ∈ F : a ≥ 0} is an ordering. Instead of speaking of
the set P we shall often speak of the set P ∗ = P \ {0}. Clearly P is an ordering if
and only if the set P ∗ satisfies:

(1)
∧

p1,p2∈P∗ p1 + p2 ∈ P ∗,
(2) P ∗ ∩ −P ∗ = ∅,
(3)

∧
a∈U(F ) a ∈ P ∗ ∨ −a ∈ P ∗,

(4)
∧

p1,p2∈P∗ p1 · p2 ∈ P ∗.
Similar conditions can be written for P ∗ in order for P to be a semiordering.
Therefore we shall often confuse the notion of P and P ∗. Let:

YF = {P ⊂ U(F ) : P is a semiordering in F},

XF = {P ⊂ U(F ) : P is an ordering in F}.
In the sets YF and XF define the Harrison sets:

H(a) = {P ∈ YF : a ∈ P},

HX(a) = H(a) ∩XF

and introduce a topology in YF by taking H(a)’s as subbasis sets. The topology in
XF is the topology induced from YF , since XF ⊂ YF .

Let F be a fields, ≥ a semiordering in F , v : F → G ∪ {∞} a valuation. The
valuation v is said to be compatible with the semiordering ≥ if:∧

a,b∈F

0 < a ≤ b⇔ v(a) ≥ v(b).

A subset A ⊂ F is said to be symmetric if:∧
a∈F

a ∈ A⇒ −a ∈ A.

A symmetric subset A ⊂ F is convex (with respect to the semiordering ≥) if:∧
a,b∈F

0 ≤ a ≤ b ∧ b ∈ A⇒ a ∈ A.

Lemma 4. Let F be a field , v : F → G ∪ {∞} a valuation, ≥ an ordering. The
following are equivalent:

(1) ≥ is compatible with v,
(2) Av is convex with respect to ≥,
(3) Mv is conver with respect to ≥,
(4)

∧
a∈F 0 ≤ a ∧ a ∈Mv ⇒ a < 1.
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Proof. (1) ⇒ (2): Let a, b ∈ F be such that 0 ≤ a ≤ b. Suppose that b ∈ Av. Then
v(a) ≥ v(b) ≥ 0, so a ∈ Av.

(2) ⇒ (3): Let a, b ∈ F be such that 0 ≤ a ≤ b. Suppose that b ∈ Mv. Clearly
1
b ≤

1
a and 1

b 6= Av. Thus 1
a 6= Av, so a ∈Mv.

(3) ⇒ (4): Let a ∈ F be such that 0 ≤ a. Suppose that a ∈ Mv. If 1 ≤ a then
1 ∈Mv - a contradiction.

(4) ⇒ (1): Let a, b ∈ F be such that 0 ≤ a. Suppose that v(a) < v(b). Then
0 < v(b)− v(a) = v( b

a ), so b
a ∈Mv. Thus b

a < 1, so b < a. �

Denote:
Xv

F = {P ∈ XF : P is compatible with v},

Y v
F = {P ∈ YF : P is compatible with v}.

Remark 1. Xv
F and Y v

F are closed subsets of XF and YF , respectively, for all v.

Proof. We shall show that YF \ Y v
F is open. Fix P ∈ YF \ Y v

F . Then for some
a, b ∈ F we have a ∈ P , b − a ∈ P and v(a) < v(b). Thus H(a) ∩ H(b − a) is
an open neighbourhood of P . Moreover, H(a)

⋂
H(b− a)

⋂
Y v

F = ∅ - otherwise, if
Q ∈ H(a)

⋂
H(b−a)

⋂
Y v

F , then a ∈ Q, b−a ∈ Q, so v(a) ≥ v(b) - a contradiction.
Since XF is a closed subset of YF , Xv

F is a closed subset of XF . �

Let F be a field, v : F → G ∪ {∞} a valuation. A semisection is a mapping
s : G→ U(F ) such that:

(1) s(0) = 1,
(2) v(s(g)) = g,
(3) s(g1+g2)

s(g1)·s(g2)
∈ U(F )2, that is s(g1 + g2) ≡ s(g1) · s(g2)modU(F )2.

A section is a mapping s : G→ U(F ) such that:

(1) s(0) = 1,
(2) v(s(g)) = g,
(3) s(g1 + g2) = s(g1) · s(g2).

Remark 2. Let F be a field, v : F → G ∪ {∞} a valuation, s : G → U(F ) a
semisection.

(1) s(g1 + g2) ∈ U(F )2,
(2) g1 − g2 = g3 + g3 ⇒ s(g1)

s(g2)
∈ U(F )2, that is g1 ≡ g2mod2G ⇒ s(g1) ≡

s(g2)modU(F )2.

As an example consider G = Z and v : F → Z∪ {∞} a valuation. Let p ∈ U(F )
be such that v(p) = 1. Then s : Z → U(F ) gicen by:

s(n) = pn

is a semisection.

Theorem 12. Let F be a field, v : F → G∪ {∞} a valuation. Then there exists a
semisection for the valuation v.

Proof. Since v is a surjection, for every g ∈ G there exists ag ∈ U(F ) such that
v(ag) = g. Observe that 2G = {g+g : g ∈ G} is a subgroup of the group G which -
since G is commutative - is normal. Consider the group G/2G. It can be viewed as
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a vector space over the field F2. Let B ⊂ G be such subset that {g + 2G : g ∈ B}
is a basis for G/2G. Thus for all g ∈ G there exist g1, . . . , gn ∈ B such that:

g = g1 + . . .+ gn + g′ + g′.

Define s : G→ U(F ) by:

s(g) = ag1 · . . . · agn
· (ag′)2.

It is trivial to check that s is a semisection for v. �

Lemma 5. Let F be a field, v : F → G ∪ {∞} a valuation, Fv a residue field for
v, s : G → U(F ) a semisection for v. Then every semiordering P ∈ Y v

F induces a
pair of mappings φP : G/2G→ YFv and σP : G/2G→ {−1, 1} given by:∧

g∈G

σP (g + 2G) · s(g) ∈ P

and ∧
g∈G

∧
b∈U(Av)

b+Mv ∈ φP (g + 2G) ⇔ b · s(g) · σP (g + 2G) ∈ P.

Proof. It suffices to verify that φP and σP are well-defined. If g′ + 2G = g′′ + 2G,
g′, g′′ ∈ G, then g′ ≡ g′′mod2G, so by the previous remark s(g′) ≡ s(g′′)modU(F )2,
so σP is well-defined.

If b′ + Mv = b′′ + Mv, b′, b′′ ∈ U(Av), then b′ = b′′ + m for some m ∈ Mv.
Suppose that b′s(g)σP (g + 2G) ∈ P . We have that:

v(b′s(g)σP (g + 2G)) = v(b′) + v(±s(g)) = v(b′) + v(s(g)) =
= v(b′) + g = v(b′′ +m) + g = min{v(b′′), v(m)}+ g <

< v(m) + g = v(ms(g)σP (g + 2G))

because if b′′ ∈ U(Av) and m ∈Mv then v(b′′) = 0, v(m) > 0. Since v is compatible
with P :

b′′s(g)σP (g + 2G) = (b′ −m)s(g)σP (g + 2G) ∈ P.
Thus φP is well-defined. It is easy to check that φP (g+ 2G) is a semiordering. �

Corollary 1. Let F be a field, v : F → G ∪ {∞} a valuation. If Y v
F 6= ∅, then

Av = F or F is formally real.

Proof. Let P ∈ Y v
F . By the previous lemma φP (0 + 2G) is a semiordering in Fv.

Thus Fv is ordered and hence real (by the Zorn’s lemma every semiordering can be
extended to a ordering). �

Lemma 6. Let F be a field, v : F → G∪{∞} a valuation, Fv a real closed residue
field, s : G → U(F ) a semisection of v. Every pair of functions φ : G/2G → YFv

and σ : G/2G→ {−1, 1} induces a semiordering φσ ∈ Y v
F given by:∧

a∈U(F )

a ∈ φσ ⇔ a

s(v(a))
σ(v(a) + 2G) +Mv ∈ φ(v(a) + 2G).

Proof. We shall show that: ∧
a,b∈φσ

a+ b ∈ φσ.
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Fix elements a, b ∈ φσ. Then
a

s(v(a))
σ(v(a) + 2G) +Mv ∈ φ(v(a) + 2G),

b

s(v(b))
σ(v(b) + 2G) +Mv ∈ φ(v(b) + 2G).

If v(a) = v(b) then:

(
a

s(v(a))
σ(v(a) + 2G) +Mv) + (

b

s(v(b))
σ(v(b) + 2G) +Mv) =

=
a+ b

s(v(a))
σ(v(a) + 2G) +Mv ∈ φ(v(a) + 2G),

so a+b
s(v(a)) ∈ U(Av) - otherwise 0 ∈ φ(v(a) + 2G) which contradicts the definition of

a semiordering. Thus v(a+ b) = v(s(v(a))) = v(a) and hence a+b
s(v(a+b))σ(v(a+ b) +

2G) +Mv ∈ φ(v(a+ b) + 2G), that is a+ b ∈ φσ.
If v(a) < v(b), then v(a± b) = min{v(a), v(b)} = v(a). Moreover, v(± b

s(v(a)) ) =
v(b)− v(s(v(a))) = v(b)− v(a) > 0, so ± b

s(v(a)) ∈ Mv. Thus a±b
s(v(a±b))σ(v(a± b) +

2G) +Mv ∈ φ(v(a± b) + 2G), so a± b ∈ φσ.
If v(b) < v(a), then v(a + b) = min{v(a), v(b)} = v(b), Moreover, v( a

s(v(b)) ) =
v(a) − v(s(v(b))) = v(a) − v(b) > 0, so a

s(v(b)) ∈ Mv. Thus a+b
s(v(a+b))σ(v(a + b) +

2G) +Mv ∈ φ(v(a+ b) + 2G), so a+ b ∈ φσ.
Considering the case when v(a) < v(b) we proved that φσ is compatible with v.

Now we shall show that: ∧
a∈φσ

∧
b∈U(F )

ab2 ∈ φσ.

Fix a ∈ φσ and b ∈ U(F ). Then:
a

s(v(a))
σ(v(a) + 2G) +Mv ∈ φ(v(a) + 2G).

Moreover:

(
b

s(v(b))
+Mv)2 =

b2

s(v(b))2
+Mv =

b2s(v(a))
s(v(b))2s(v(s))s(0)

+Mv =

=
b2s(v(a))

s(v(a) + v(b) + v(b))
+Mv =

b2s(v(a))
s(v(ab2))

+Mv

and
v(ab2) + 2G = v(a) + v(b) + v(b) + 2G = v(a) + 2G

so
ab2

s(v(ab2))
σ(v(ab2) + 2G) +Mv ∈ φ(v(ab2) + 2G)

which implies that ab2 ∈ φσ.
Finally, it remains to show that:∧

a∈U(F )

a ∈ φσ ∨ −a ∈ φσ,

but this is clear by the definition of φ(g + 2G), g ∈ G. �

Now we may state the main result of the current stection:
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Theorem 13 (Baer-Krull). Let F be a field, v : F → G ∪ {∞} a valuation, Fv

a real closed residue field, s : G → U(F ) a semisection of v. The constructions
described in lemmas 5 and 6 establish a bijective correspondence between the set Y v

F

and the set {φ : φ : G/2G→ YFv
}× {σ : σ : G/2G→ {−1, 1}, σ(0 + 2G) = 1}, that

is (φP )σP = P and (φφσ , σφσ ) = (φ, σ).

Proof. We shall show that for all P ∈ Y v
F (φP )σP = P . Fix P ∈ Y v

F . Let φP and
σP be defined as in the lemma 5. Then for a ∈ U(F ):

a ∈ (φP )σP ⇔ a

s(v(a))
σP (v(a) + 2G) +Mv ∈ φP (v(a) + 2G) ⇔

⇔ a

s(v(a))
σP (v(a) + 2G)s(v(a))σP (v(a) + 2G) =

= aσP (v(a) + 2G)2 = a ∈ P.

We shall show that (φφσ , σφσ ) = (φ, σ). Let φ : G/2G → YFv
and σ : G/2G →

{−1, 1} be such that σ(0 + 2G) = 1. Let φσ be defined as in the lemma 6. Then:

σ(g + 2G)s(g)
s(v(σ(g + 2G)s(g)))

σ(v(σ(g + 2G)s(g)) + 2G) +Mv =

=
σ(g + 2G)s(g)

s(g)
σ(g + 2G) +Mv = 1 +Mv =

= 12 +Mv ∈ φ(v(σ(g + 2G)s(g)) + 2G).

Thus σ(g + 2G)s(g) ∈ φσ and hence σ = σφσ . Moreover, for g ∈ G and b ∈ U(Av)
we have:

b+Mv ∈ φφσ (g + 2G) ⇔ bs(g)σφσ (g + 2G) ⇔ bs(g)σ(g + 2G) ∈ φσ ⇔

⇔ bs(g)σ(g + 2G)
s(v(bs(g)σ(g + 2G)))

σ(v(bs(g)σ(g + 2G)) + 2G) +Mv =

=
bs(g)σ(g + 2G)
s(v(b) + g)

σ(v(b) + g + 2G) +Mv =

= bσ(g + 2G)2 +Mv =
= b+Mv ∈ φ(v(bs(g)σ(g + 2G)) + 2G) = φ(g + 2G).

�

Let G be any group and K a field. A character of the group G in the field K
is a homomorphism χ : G→ U(K).

Theorem 14. Let F be a field, v : F → G ∪ {∞} a valuation, Fv a real closed
residue field, s : G → U(F ) a semisection of v. Use the notation from lemmas 5
and 6. Then P ∈ Xv

F if and only if φP : G/2G → XFv
is constant and σP is a

character on G/2G.

Proof. (⇒): Let P ∈ Xv
F . Then for g1, g2 ∈ G:

σP ((g1 + 2G) + (g2 + 2G)) = 1 ⇔ s(g1 + g2) ∈ P ⇔ s(g1)s(g2 ∈ P ) ⇔
⇔ s(g1), s(g2) ∈ P ∨ s(g1)s(g2) /∈ P ⇔
⇔ σP (g1 + 2G)σP (g2 + 2G) = 1.
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So - since the value set of σP consists of only two elements - this implies that σP

is a homomorphism. Next, for b ∈ U(Av) by the lemma 5:

b+Mv ∈ φP (g + 2G) ⇔ bs(g)σP (g + 2G) ∈ P

and
b+Mv ∈ φP (0 + 2G) ⇔ bs(0)σP (0 + 2G) = b ∈ P.

Since σP (g + 2G)s(g) ∈ P and P is an ordering, this yields:

b+Mv ∈ φP (g + 2G) ⇔ bs(g)σP (g + 2G) ∈ P ⇔ b ∈ P ⇔ b+Mv ∈ φP (0 + 2G),

so φP is constant.
(⇐): Let σP be a character, let φP be constant. We shall show that for a1, a2 ∈ P

a1a2 ∈ P . Indeed, by lemma 6 for a1, a2 ∈ P :
ai

s(v(ai))
σP (v(ai) + 2G) +Mv ∈ φP (v(ai) + 2G) = φP (0 + 2G), i ∈ {1, 2}.

Since s(v(a1a2)) ≡ s(v(a1))s(v(a2))modU(F )2, we have:
a1a2

s(v(a1a2))
σP (v(a1a2) + 2G) +Mv =

= f2 a1a2

s(v(a1))s(v(a2))
σP ((v(a1) + 2G) + (v(a2) + 2G)) +Mv =

= [
a1

s(v(a1))
σP (v(a1) + 2G) +Mv] · [ a2

s(v(a2))
σP (v(a2) + 2G) +Mv] ·

·[f2 +Mv] ∈ φP (0 + 2G) = φP (v(a1a2) + 2G).

�

Corollary 2. Let F be a field, v : F → G ∪ {∞} a valuation, Fv a real closed
residue field. Then Xv

F 6= ∅ and every semiordering P ∈ Y v
F is non-Archimedean.

Proof. Since Fv is real, we have that XFv
6= ∅. Fix an arbitrary constant function

φ : G/2G → XFv
and a constant character φP : G/2G → {−1, 1}. By the Baer-

Krull theorem and the previous theorem, Xv
F 6= ∅. Fix P ∈ Y v

F and g ∈ G such
that g < 0. Let a ∈ P be such that v(a) = g. Since Fv is real, v(n) = 0 for n ≥ 1.
Since P is compatible with v, we have that, as a ∈ P and v(a) < v(n) - a, n ∈ P .
Thus P cannot be Archimedean. �

Corollary 3. Let F be a field, v : F → G ∪ {∞} a valuation, Fv a real closed
residue field. Then Xv

F = Y v
F if and only if

|G/2G| = 2 and |XFv | = 1

or
|G/2G| = 1 and XFv

= YFv
.

Proof. Let s : G→ U(F ) be a semisection. Observe that the mapping σ : G/2G→
{−1, 1} such that σ(0+2G) = 1 is a character if and only if |G/2G| ≤ 2. Moreover,
if |XFv

| = 1, then |YFv
| = 1. In this case every mapping φ : G/2G → XFv

is
constant. Thus our statement follows from the Baer-Krull theorem and the previous
result. �
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Let (F,≥) be a field with semiordering ≥, let A,B ⊂ F . We say that A is
cofinite in B with respect to ≥ it A ⊂ B and∧

b∈B

∨
a∈A

b ≤ a.

Remark 3. Let (F,≥) be a field with semiordering ≥, let F0 ⊂ F be a subfield.
The set

A≥F0
= {a ∈ F : |a| ≥ b for some b ∈ F0}

is the smallest convex set B such that F0 is cofinite in B.

Lemma 7. Let (F,≥) be a field with semiordering ≥, F0 ⊂ F be a subfield. Then
A≥F0

is a valuation ring in F convex with respect to ≥.

Proof. Obviously Q ⊂ A≥F0
(where Q means the field isomorphis with the rationals)

and A≥F0
is closed with respect to addition and subtraction. We shall show that if

a ∈ A≥F0
, then a2 ∈ A≥F0

. Indeed, fix a ∈ A≥F0
. There exists b ∈ F0 such that |a| ≤ b.

We may assume that 1 < b. Thus |a| ≤ b2 and |a2| = |a|2 ≤ b4 ∈ F0, so a2 ∈ A≥F0
.

That mens that - since (a+b
2 )2− (a−b

2 )2 = ab - A≥F0
is also closed under multipli-

cation. It remains to show that it is a valuation ring. Fix a ∈ F and suppose that
a /∈ A≥F0

. Again, we may assume that 1 < a. Then 0 < a−1 < 1, so a−1 ∈ A≥F0
. �

Theorem 15. The topological space XF of orderings is the sum of the Archimedean
orderings and the sets Xv

F , where v : F → G∪{∞} are such valuations that Fv are
real.

Proof. Let ≥ be a non-Archimedean ordering. By the previous lemma A≥Q is a
valuation ring different from F . Let v : F → G ∪ {∞} be such valuation that
Av = A≥Q . Since Av is convex with respect to ≥, v is compatible with ≥. Thus
≥∈ Xv

F and by the previous corollary Fv is a real field. �

4. Orderings of Q(X)

By the Baer-Krull theorem we know that orderings in Q(X) arise from the
orderings in the residue fields associated with valuations on Q(X). By the previous
examples we know that the residue fields associated with valuations on Q(X) are
just the algebraic number fields Q(α). Next, by the Artin-Schreier theorem, Q(α)
is an ordered field if and only if Q(α) ⊂ R, that is if α ∈ R. Therefore R is the
real closure for all every field Q(α). We shall describe orderings in Q(α) in more
details.

First, observe that orderings on Q(α) are in bijective correspondence with Q-
embeddings of Q(α) into R. Indeed, let σ : Q(α) ↪→ R be an Q-embedding. Then
σ defines an ordering P = σ−1(R2). If σ1 6= σ2 then σ−1

1 (R2) 6= σ−1
2 (R2). For

if σ−1
1 (R2) = σ−1

2 (R2) then σ2 ◦ σ−1
1 : σ1(Q(α)) → σ2(Q(α)) defines an order-

preserving isomorphism between two ordered fields lying in the same real closed
field, so - by the uniqueness of the real closure - σ2 ◦ σ1 = id and thus σ1 = σ2 -
a contradiction. Thus our correspondence is one-to-one. To show its surjectivity,
let P ′ be an ordering of Q(α). Let Q(α) be a real closure of Q(α) extending the
ordering P ′. By the uniqueness of the real closure, there exists an isomorphism
σ∗ : Q(α) → R, which induces an embedding σ : Q(α) → R such that σ = σ∗|Q(α).
Clearly P ′ = σ−1(R2).
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Next, let f be a minimal polynomial for α. We shall show that embeddings
of Q(α) into R are in bijective correspondence with real roots of f . Indeed, let
σ : Q(α) ↪→ R be an embedding. f - as a polynomial with coefficients in Q - may
be viewed as a polynomial in R[X] as well. Clearly f(σ(α)) = 0, so σ(α) is a
root of f . Such correspondence is one-to-one: assume that σ1(α) = σ2(α). Clearly
Q(α) = {a0 + a1α + . . .+ am−1α

m−1 : ai ∈ Q}, where m = [Q(α) : Q], so we may
write:

σ1(a0 + a1α+ . . .+ am−1α
m−1) = a0 + a1σ1(α) + . . .+ am−1σ1(α)m−1 =

= a0 + a1σ2(α) + . . .+ am−1σ2(α)m−1 =
= σ2(a0 + a1α+ . . .+ am−1α

m−1),

which implies that σ1 = σ2. To chow that the correspondence is surjective, fix a
root β of f ∈ R. If m = [Q(α) : Q] then for all l < m the elements 1, β, . . . , βl−1

are algebraically independent; indeed, suppose that for some b1 ∈ Q:

b0 + b1β + . . .+ bl−1β
l−1 = 0.

Then b0 + b1X + . . . + bl−1X
l−1 ∈ {h ∈ Q[X] : h(β) = 0} and I = {h ∈ Q[X] :

h(β) = 0} is an ideal such that f ∈ I. Sinve Q[X] is a principal ideal domain,
I = (g) for some g ∈ Q[X] and since b0 + b1X + . . . + bl−1X

l−1 ∈ I we have
that deg g ≤ l − 1 < m − 1. Moreover, g|f , which is a contradiction, since f is
irreducible. Thus 1, β, . . . , βl−1 are algebraically independent and σ : Q(α) → R
given by σ(a0+. . .+am−1α

m−1) = a0+. . .+am−1β
m−1 is a well-defined embedding.

Now we shall describe orderings in the field Q(X) associated with valuations.
As we already know, the valuations on Q(X) are in bijective correspondence with
irreducible polynomials f ∈ Q[X] and the element ∞. Let f ∈ Q(X) be an irre-
ducible polynomial, let n = deg f . Denote by vX,f the valuation associated with f ,
namely vX,f : Q(X) → Z ∪ {∞} given by:

vX,f (g) =
{
∞ if g = 0,
nf if g = u

∏
h∈P h(X)nh , nh ∈ Z, u ∈ {−1, 1}.

where P denotes the set of all irreducible polynomials in Q(X). Clearly the valuation
ring associated with vX,f is:

AvX,f
= {p

q
: f - q}

with the only maximal ideal given by:

MvX,f
= {p

q
: f - q, f |q}.

Observe that the residue field associated with such valuation satisfies:

FvX,f
= AvX,f

/MvX,f
∼= Q[X]/(f).

Indeed, consider the homomorphism Φ : Q[X] → AvX,f
/MvX,f

given by:

Φ(g) = g +MvX,f
.

Clearly, the kernel of Φ is the ideal generated by f . Moreover, Φ is surjective: if
g ∈ AvX,f

, we can write g = p(X)
q(X) with p, q ∈ Q[X] such that p - q. Thus there are

r, s ∈ Q[X] with r(X)f(X) + s(X)q(X) = 1, therefore

g = 1 · g =
r(X)p(X)
q(X)

f(X) + s(X)p(X)
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and g + MvX,f
= s(X)p(X) + MvX,f

is in the image of Φ. Thus Φ induces an
isomorphism Φ̂ : Q[X]/(f) → AvX,f

/MvX,f
given by:

Φ̂(g + (f)) = g +MvX,f
.

Next, suppose that α1, . . . , αm are all real roots of f . We shall show that the
residue field Q[X]/(f) can be mapped isomorphically onto each of the fields Q(αi).
Indeed, fix i ∈ {1, . . . ,m} and define the mapping Ψ : Q[X] → Q(αi) by:

Ψ(g) = g(αi).

Clearly Ψ is surjective and its kernel is the ideal generated by f , so Ψ induces an
isomorphism Ψ̂ : Q[X]/(f) → Q(αi) given by:

Ψ̂(g + (f)) = g(αi).

We shall describe the orderings of Q(αi) more precisely. We know that - via the
Baer-Krull correspondence - those orderings play an essential role in building or-
derings compatible with vX,f . From the previous remarks we know that the residue
field of vX,f is isomorphic to Q(αi) and that Q(αi) has m orderings corresponding
to variuos embedings of Q(αi) into R, each determined by the element αi and one
of the real roots αj of f . Let Pαi,αj

denote the ordering of Q(αi) derived from the
embedding which maps αi onto αj . We shall show that:

(Q(αi), Pαi,αj
) is order-isomorphic to (Q(αj), Pαj ,αj

).

Clearly the fields Q(αi) and Q(αj) are isomorphic and the isomorphism Γ : Q(αi) →
Q(αj) is given by:

Γ(a0 + . . .+ an−1α
n−1
i ) = a0 + . . .+ an−1α

n−1
j .

Let σαi,αj
: Q(αi) ↪→ R and σαj ,αj

: Q(αj) ↪→ R be the embeddings given by:

σαi,αj (a0 + . . .+ an−1α
n−1
i ) = a0 + . . .+ an−1α

n−1
j

and
σαj ,αj

= id.

Then Pαi,αj
= σ−1

αi,αj
(R2) and Pαj ,αj

= σ−1
αj ,αj

(R2) and we have to show that
Γ(Pαi,αj

) = Pαj ,αj
. This is clear; (⊂): let a0 + . . . + an−1α

n−1
i ∈ Pαi,αj

, that is
a0 + . . .+ an−1α

n−1
j ∈ R2 which means that Γ(a0 + . . .+ an−1α

n−1
i ) = a0 + . . .+

an−1α
n−1
j ∈ Pαj ,αj

. (⊃): let a0 + . . . + an−1α
n−1
j ∈ Pαj ,αj

, that is a0 + . . . +
an−1α

n−1
j ∈ R2, which means that a0 + . . .+ an−1α

n−1
i ∈ Pαi,αj

while Γ(a0 + . . .+
an−1α

n−1
i ) = a0 + . . .+ an−1α

n−1
j .

Thus instead of considering Q(αi) with the ordering Pαi,αj
, we may consider

the field Q(αj) with the usual ordering induced from the reals. Therefore the set
YFvX,f

may be viewed as a family of the fields {Q(αi) : i ∈ {1, . . . ,m}} with the
usual orderings.

Next, the semisection s : Z → Q(X) \ {0} of vX,f is clearly given by: s(n) = fn

and each function φ : Z/2Z → YFvX,f
is constant, that is we may say that there

are m such functions φ1, . . . , φm, each φi - in view of the previous remarks - taking
Q(αi) with usual ordering as the only value. As we know there are 2 characters
σ : Z/2Z → {−1, 1}, namely σ1 and σ2 defined by:

x 0 + 2Z 1 + 2Z
σ1 1 −1

x 0 + 2Z 1 + 2Z
σ2 1 1

.
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Thus f induces 2m orderings, namely:

φσ1
1 , . . . , φσ1

m , φσ2
1 , . . . , φσ2

m .

We shall describe such orderings in terms of polynomials. Let g ∈ Q[X] and
suppose that g = fv(g) · h. We have:

g ∈ φσ1
i ⇔ g

s(v(g))
σ1(v(g) + 2Z) +MvX,f

∈ Pαi,αi
⇔

⇔ hσ1(v(g) + 2Z) + (f) ∈ Pαi,αi ⇔
⇔ hσ1(v(g) + 2Z)(αi) ∈ Pαi,αi ⇔
⇔ hσ1(v(g) + 2Z)(αi) ∈ R2 ⇔
⇔ (h(αi) ∈ R2 ∧ v(g) - even ) ∨ (−h(αi) ∈ R2 ∧ v(g) - odd ).

Similarly:
g ∈ φσ1

i ⇔ h(αi) ∈ R2.

This describes all orderings associated with polynomials.
Let vX,∞ : Q(X) → Z ∪ {∞} be the remaining valuation of Q(X) given by:

vX,∞(g) =

{
∞, if g = 0,
deg q − deg p, if g = p(X)

q(X) , p, q ∈ Q[X] \ {0}.

The valuation ring for such valuation is defined by:

AvX,∞ = {p
q

: deg p ≤ deg q}

and the only maximal ideal is:

MvX,∞ = {p
q

: deg p < deg q}.

The residue field FvX,∞ = AvX,∞/MvX,∞ is isomorphic to Q and the isomorphism
Φ̂ : AvX,∞/MvX,∞ → Q is given by

Φ̂(
anX

n + . . .+ a0

bnXn + . . .+ b0
) +MvX,∞ =

an

bn
.

The semisection s : Z → Q(X) \ {0} is clearly given by:

s(n) =
1
Xn

.

Since the degree of such valuation is 1, the residue field is just Q. Q has only
one ordering, so the set YFvX,∞

consists of only one element, which may be viewed
as the field Q with the usual ordering and there is only one constant function
φ : Z/2Z → YFvX,∞

. Thus - since we have two characters σ : Z/2Z → {−1, 1} -
there are only two orderings associated with this valuation, namely

φσ1 , φσ2 .

Let us see how this ordering works with polynomials. Let g = anX
n + . . .+a0 ∈

Q[X]. Then:

g ∈ φσ1 ⇔ g

s(v(g))
σ1(v(g) + 2Z) +MvX,∞ ∈ Q+ ⇔

⇔ an · σ1(v(g) + 2Z) ∈ Q+ ⇔
⇔ (an > 0 ∧ n - even ) ∨ (an < 0 ∧ n - odd ).
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Similarly:
g ∈ φσ2 ⇔ an > 0
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