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Abstract. The following notes are based on a series of talks given at the
Algebra and Logic Seminar at the University of Saskatchewan in the Summer

2004. They are entirely dependent on the cited bibliography. The main pur-

pose of those notes is to provide some introductory knowledge required for
understanding open questions in the theory of spaces of orderings that we are

studying at the seminar. The material contained in those notes covers - more
or less - the first chapter of the paper [6] and is intended to be as self-contained

as possible.

1. Introduction

Recall that a bilinear space over a field K is a pair (V, β), where V is a finite
dimensional vector space over the field K and β : V × V → K is a bilinear func-
tional on the space V . The dimension of a bilinear space is the dimension of the
corresponding vector space V . A vector v ∈ V is said to be isotropic if v 6= 0 and
β(v, v) = 0. The space (V, β) is said to be symmetric when the bilinear functional
β is symmetric and is said to be alternating if β(v, v) = 0 for every v ∈ V . If
B = (v1, . . . , vn) is a basis for the vector space V then the matrix [β(vi, vj)] is
called the matrix of the bilinear space V relative to B. For two bases B and
C and for two matrices A and B of β relative to B and C, respectively, the following
formula holds:

B = PAPT ,

where P denotes the transition matrix from B to C (for proof see [3], pages 95 -
100). The determinant of a bilinear space is defined to be the determinant of a
matrix of β relative to any basis - it depends on the choice of the basis. According
to the above formula we have:

detB = (detP )2 · detA,

thus the determinant might be considered as an element of the square class group
of the field K, that is the factor group U(K)/U(K)2. In that sense the determinant
is unique. We say that bilinear spaces (V, β) and (U,α) are isometric (written
V ∼= U) if there exists an isomorphism i : V → U such that:

β(u, v) = α(i(u), i(v)),

for all u, v ∈ V . Since two bilinear spaces are isometric iff their matrices relative
to any bases are congruent (for proof see [3], pages 95 - 100), we shall also use the
notation V ∼= A to indicate that A is the matrix of V relative to some basis. Next,
it can be shown (for proof see [3], pages 95 - 100) that the following five conditions
for a given space (V, β) whose matrix relative to some basis is A are equivalent:

(1) rad1(V ) = {v ∈ V : β(v, u) = 0, u ∈ V } = {0},
1
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(2) rad2(V ) = {v ∈ V : β(u, v) = 0, u ∈ V } = {0},
(3) detA 6= 0,
(4) the mapping Λ : V → V ∗ given by:

Λ(v)(u) = β(v, u),

is an isomorphism of vector spaces,
(5) the mapping Ψ : V → V ∗ given by:

Ψ(v)(u) = β(u, v),

is an isomorphism of vector spaces.
If any (and hence all) of the above conditions are satisfied, we call (V, β) to be non-
singular. Finally, we say that a space V is diagonalizable (or has an orthogo-
nal basis) if there is a basis producing a diagonal matrix for V . The well-known
Gramm-Schmidt theorem (for proof see [3], pages 109 - 112) states, that any bilin-
ear symmetric space over a field of characteristic different from 2 is diagonalizable.
In the case of characteristics 2 the theorem holds if we make an additional assump-
tion that V is non-alternating. If A is a matrix with diagonal entries a1, . . . , an we
shall simply write (a1, . . . , an) instead of A.

2. Hyperbolic planes, isotropic planes

Let K be any field, let (V, β) be a bilinear space over K. We say that vectors
u, v ∈ V form a hyperbolic plane if:

β(u, u) = β(v, v) = 0, β(u, v) = β(v, u) = 1.

The plane spanned on a hyperbolic pair is called the hyperbolic plane. We shall
give some alternative definitions of hyperbolic planes.

Theorem 1. Let (V, β) be a bilinear, symmetric, non-singular space of dimension
2 over a field K of characteristic different from 2. The following are equivalent:

(1) V is a hyperbolic plane,

(2) V ∼=
[
0 1
1 0

]
,

(3) V ∼= (1,−1),
(4) detV = (−1)U(K)2.

Proof. (1)⇒(2) is trivial: just take the appropriate hyperbolic pair. To prove

(2)⇒(3) suppose that u, v is the basis relative to which V has the matrix
[
0 1
1 0

]
.

Consider the vectors x = 1
2u + v and y = 1

2u − v. Those vectors form a basis

for V , since the transition matrix
[

1
2 1
1
2 −1

]
is nonsingular. Moreover, by a direct

computation: [
1
2 1
1
2 −1

]
·
[
0 1
1 0

]
·
[

1
2 1
1
2 −1

]T

=
[
1 0
0 −1

]
.

(3)⇒(4) is trivial, and for (4)⇒(1) assume that (a, b) is a diagonalization for V .
Since detV = (−1)U(K)2, abU(K)2 = (−1)U(K)2, so aU(K)2 = −bU(K)2 and
V ∼= (a,−a) is a certain basis {u, v} of V . Then u + v 6= 0 and β(u + v, u + v) =
β(u, u) + 2β(u, v) + β(v, v) = β(u, u) + β(v, v) = a− a = 0. Since V is nonsingular,
there is a w ∈ V such that β(u + v, w) = c 6= 0, so β(u + v, 1

cw) = 1. The vectors
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u+v and 1
cw are linearly independent, since otherwise 1

cw = d(u+v), where d ∈ K,
and then:

1 = β(u+ v,
1
c
w) = β(u+ v, d(u+ v)) = dβ(u+ v, u+ v) = d · 0 = 0,

a contradiction. Thus u + v and 1
cw form a basis for V such that the matrix of β

relative to (u+ v, 1
cw) is: [

0 1
1 e

]
.

If e = 0 the proof is finished, so assume that a 6= 0. In this case take the vectors
u+ v and − 1

2e(u+ v) + 1
cw. Straightforward computation gives:

β(u+ v,−1
2
e(u+ v) +

1
c
w) = β(u+ v,

1
c
w) = 1

and

β(−1
2
e(u+v)+

1
c
w,−1

2
e(u+v)+

1
c
w) = −eβ(u+v,

1
c
w)+β(

1
c
w,

1
c
w) = −e+e = 0.

�

A 2-dimensional bilinear space (V, β) over a field K is said to be an isotropic
plane if there is an isotropic vector in V . Since singular planes are obviously
isotropic, we will focus on nonsingular isotropic planes. Using similar tricks as in
the previous proof we may show that the followin theorem holds.

Theorem 2. Let (V, β) be a bilinear, symmetric, non-singular space of dimension
2 over a field K of characteristic different from 2. The following are equivalent:

(1) V is an isotropic plane,

(2) V ∼=
[
0 1
1 a

]
for some a ∈ K,

(4) V ∼=
[
0 1
1 0

]
,

(5) V ∼= (1,−1),
(6) V ∼= (a,−a) for all a ∈ U(K),
(7) detV = (−1)U(K)2.

An arbitrary hyperbolic plane is always isotropic. The converse is true under
the assumption that charK 6= 2. In the case when charK = 2 the following holds:

Theorem 3. Let (V, β) be a bilinear, symmetric, non-singular space of dimension
2 over a field K of characteristic 2. The following are equivalent:

(1) V is isotropic but not hyperbolic,

(2) there is an a ∈ U(K) such that V ∼=
[
0 1
1 a

]
,

(3) there is an a ∈ U(K) such that V ∼= (a, a).

The formal proof uses the same techniques as the previous and will be omitted.
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3. Direct orthogonal sums. Metabolic and hyperbolic spaces.

Let (V, β) be a bilinear space over a field K, let U1, . . . , Uk be subspaces of V .
We say that V is the internal direct orthogonal sum of U1, . . . , Uk if V is the
direct sum of linear subspaces U1, . . . , Uk (that is V = U1 + . . . + Uk and for any
j ∈ {1, . . . , k} Uj∩(U1+. . .+Uj−1+Uj+1+. . .+Uk) = {0}) and for ui ∈ Ui, uj ∈ Uj ,
i 6= j, β(ui, uj) = 0. We will also need a more general concept of the external
direct orthogonal sum. Let (U1, β1), . . . , (Uk, βk) be a family of bilinear spaces
over the same field K. We introduce a new vector space V = U1 × . . . × Uk and
make it into a bilinear space by defining a bilinear functional β : V × V → K by
the formula:

β((u1, . . . , uk), (v1, . . . , vk)) =
k∑

i=1

βi(ui, vi).

If we identify the spaces Ui with subspaces U ′
i = {0} × . . . × Ui × . . . × {0}, then

the external direct orthogonal sum of Ui turns to be the internal direct orthogonal
sum of U ′

i . For both internal and external direct orthogonal sums we use notation
U1 ⊥ . . . ⊥ Uk. The basic properties of direct orthogonal sums are gathered in the
following theorem:

Theorem 4. Let K be any field, let U, V,W, S, T be bilinear spaces over K.

(1) U ⊥ {0} ∼= U ,
(2) U ⊥W ∼= W ∼= U ,
(3) (U ⊥W ) ⊥ V ∼= U ⊥ (W ⊥ V ),
(4) U ∼= S ∧W ∼= T ⇒ U ⊥W ∼= S ⊥ T ,
(5) dimU ⊥W = dimU + dimW ,
(6) detU ⊥W = detU · detW ,
(7) if U and W are nonsingular, so is U ⊥W .

Proofs of the above identities are easy and left as an exercise - for example to
prove (2) we shall consider the map Φ : U ×W →W ×U given by Φ(u,w) = (w, u)
and check, that Φ is an isometry.

The notion of direct orthogonal sums allows us to define metabolic and hyperbolic
spaces. We say that (V, β) is hyperbolic, when there are hyperbolic planes Hi such
that V ∼= H1 ⊥ . . . ⊥ Hk. We say that V is metabolic, if there are nonsingular,
symmetric isotropic planes Pi such tkat V ∼= P1 ⊥ . . . ⊥ Pk. Obviously every
hyperbolic space is metabolic, but over fields of characterictic not equal to 2 a
metabolic space not necessarily is hyperbolic.

We will extensively use the following Witt decomposition theorem:

Theorem 5. For every nonsingular symmetric space V over an arbitrary field K
there exist uniquely determined subspaces M and N such that V ∼= M ⊥ N , M is
metabolic and N is anisotropic.

Proof. First we will prove the existence of such decomposition. If N is anisotropic,
there is nothing to prove. Asuume that V is isotropic and pick an isotropic vector
v ∈ V . Since V is nonsingular, there is w ∈ V such that β(v, w) = b 6= 0. The
vectors v and w are linearly independent, since otherwise w = cv and then:

0 6= b = β(v, w) = β(v, cv) = cβ(v, v) = 0,
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a contradiction. Thus v, w span an isotropic plane, which is nonsingular; its matrix
is: [

0 b
b a

]
.

Therefore V contains at least one metabolic subspace. From among all metabolic
subspaces we choose one, which has the largest dimension and call it M . By the
well-known orthogonal complement theorem (see [3] page 102) V = M ⊥ M⊥,
where M⊥ = {u ∈ V : β(v, u) = 0, v ∈ M}. It remains to show that N = M⊥ is
anisotropic. The orthogonal complement theorem implies, that N is nonsingular.
If N were isotropic, we could choose an isotropic vector v′ ∈ N and build a nonsin-
gular isotropic plane P contained in N . Then M ⊥ P would be metabolic of the
dimension greater than M - a contradiction.

The proof of uniqueness of such decomposition is based on some geometric ar-
guments like the index of isotropy and could be found in [8], pages 150 - 159. �

4. Similarity of symmetric spaces

Let U and V be nonsingular symmetric spaces over an arbitrary field K. U and
V are said to be similar (written U ∼ V ), if there are metabolic spaces M1 and
M2 such that:

M1 ⊥ U ∼= M2 ⊥ V.

Checking that ∼ is an equivalence relation that splits the set of all nonsingular
symmetric bilinear spaces over the field K into disjoint classes of equivalence is left
to the reader. Such classes are called similarity classes and denoted by < U >.
The following lemma states the most basic properties of similarity relation.

Lemma 1. (1) < 0 > consists of all metabolic spaces,
(2) if U ∼= V then U ∼ V , but the converse is not true in general,
(3) if U and V are anisotropic, then U ∼ V implies that U ∼= V ,
(4) if V = M ⊥ N is the Witt decomposition of V , then V ∼ N ,
(5) every similarity class contains an anisotropic space unique up to isometry,
(6) every class contains a diagonalizable space and thus can be presented in the

form:
< V >=< a1, . . . , an >,

(7) dimensions of similar spaces differ by an even number.

Proof. To prove (1) assume that V ∼ 0, so there exist metabolic spaces M1 and
M2 such that:

M1 ⊥ V ∼= M2 ⊥ 0 ∼= M2.

Thus M1 ⊥ V and M1 are both metabolic. Consider the Witt decomposition of the
space V , V = M ⊥ N , where M is metabolic and N is nonsingular. We have:

M1 ⊥ V ∼= M1 ⊥M ⊥ N.

Both M1 ⊥ M and M1 ⊥ V are metabolic, so due to the uniqueness of the Witt
decomposition of M1 ⊥ V N ∼= 0 and thus V becomes metabolic.

In order to show (2) observe, that if U ∼= V , then for any metabolic space M
M ⊥ U ∼= M ⊥ V , so U ∼= V . To show (3) assume, that both U and V are
anisotropic and U ∼ N , that is M1 ⊥ U ∼= M2 ⊥ V for some metabolic M1 and
M2. But uniqueness of the Witt decomposition guarantees that U ∼= V .
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Next, (4) follows from the fact that the zero space is metabolic and:

0 ⊥ V congV ∼= M ⊥ N,

while (5) is implied by (3) and (4).
To prove (6) first assume that < V > is the nonzero class. Then V is not

metabolic, hence diagonalizable. It remains to point out a diagonalizable space in
the zero class < 0 > - but it is clear that (−1, 1) is isotropic, hence metabolic and
belonging to < 0 >. The statement (7) is obvious since metabolic spaces are of
even dimension. �

5. Witt group of a field

Let K be an arbitrary field, let W (K) denote the set of all silimarity classes
of nonsingular symmetric spaces over K. We shall make W (K) into a group by
defining addition of similarity classes as follows:

< U > + < V >=< U ⊥ V > .

The sum < U > + < V > does not depend on the choice of representatives U and
V . For if < U >∼< S > and < V >∼< T >, then let M1, . . . ,M4 be metabolic
spaces such that:

M1 ⊥ U ∼= M2 ⊥ S,M3 ⊥ V ∼= M4 ⊥ T.

Hence by theorem 4:

M1 ⊥M3 ⊥ U ⊥ V ∼= M2 ⊥M4 ⊥ S ⊥ T,

so < U > + < V >=< S > + < T >. Neutrality of the zero class < 0 >,
commutativity and associativity of addition follow similarly from theorem 4. It
remains to show that each element < u >∈ W (K) has the opposite element <
V >∈ W (K) satisfying < U > + < V >=< 0 >. If U is the bilinear space (U,α),
our choice for V is the opposite bilinar space (U,−α), where:

(−α)(u1, u2) = −α(u1, u2),

denoted briefly −U . We claim that the space

(U,α) ⊥ (U,−α)

is metabolic. Observe that if u1, u2 are orthogonal in (U,α) then they are orthogonal
in (U,−α). Hence if (U,α) is diagonalizable space and (U,α) ∼= (a1, . . . , an), then
so is the opposite space and (U,−α) ∼= (−a1, . . . ,−an). If charK 6= 2, then by 2
(a,−a) ∼= (1,−1) and by 4:

(U,α) ⊥ (U,−α) ∼= (a1, . . . , an) ⊥ (−a1, . . . ,−an)
∼= (a1,−a1) ⊥ . . . ⊥ (an,−an)
∼= (1,−1) ⊥ . . . ⊥ (1,−1).

Thus (U,α) ⊥ (U,−α) is hyperbolic and hence metabolic. If charK = 2, we first
assume that (U,α) is alternating. Let u ∈ U , u 6= 0. Then α(u, u) = 0 and, by
nonsingularity, there is a vector v ∈ U such that α(u, v) = a 6= 0. Then also
α(u, 1

av) = 1, and so we can say that for each nonzero u ∈ U there is v ∈ U such
that α(u, v) = 1. Notice, that u and v are linearly independent, since if v = bu,
then:

1 = α(u, v) = bα(u, u) = 0,
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a contradiction. The vectors u and v span a plane S. Since:

0 = α(u+ v, u+ v) = α(u, u) + α(u, v) + α(v, u) + α(v, v) = α(u, v) + α(v, u),

it follows, that S has the matrix: [
0 1
−1 0

]
.

But charK = 2, so −1 = 1 and thus the plane S is symmetric. Therefore U
contains symmetric, nonsingular isotropic plane and - in particular - dimU ≥ 2. If
dimU ≥ 2, we proceed by induction; by the orthogonal complement theorem we
have:

U = S ⊥ S⊥.

Here S⊥ is nonsingular and has a dimension smaller than U . Hence by induction
S⊥ = P1 ⊥ . . . ⊥ Pk, where Pi are pairwise orthogonal symmetric, nonsingular
isotropic planes, so U is metabolic. Finally, if U is not alternating, then U is
diagonalizable, (U,α) ∼= (a1, . . . , an), so:

(U,α) ⊥ (U,−α) ∼= (a1, . . . , an) ⊥ (a1, . . . , an)
∼= (a1, a1) ⊥ . . . ⊥ (an, an),

which is the direct orthogonal sum of nonsingular isotropic planes (see theorem 3).
The additive abelian group W (K) of similarity classes of nonsingular symmetric

spaces over a field K is said to be the Witt group of the field K.
Observe that when

< U >=< a1, . . . , an >,< V >=< b1, . . . , bm >

are representations of the classes < U > and < V >, then:

− < a1, . . . , an >=< −a1, . . . ,−an >

and
< a1, . . . , an > + < b1, . . . , bm >=< a1, . . . , an, b1, . . . , bm > .

We shall give some examples of Witt groups.

Example 1. Let K be a formally real field. Then the Witt group W (K) contains
elements of infinite order and hence is infinite abelian.

As we know, K has characteristic zero, so metabolic spaces and hyperbolic spaces
over K coincide and are direct orthogonal sums of hyperbolic planes (−1, 1). Con-
sider the odd-dimensional class < 1 >∈ W (K). Suppose that n· < 1 >= 0 for a
positive integer n. Then:

< 1, 1, . . . , 1 >=< 1 > + < 1 > + . . . < 1 >= n· < 1 >= 0,

so the n−dimensional space (1, . . . , 1) is hyperbolic:

(1, . . . , 1) ∼= (1,−1, . . . , 1,−1),

contrary to the fact that, over a formally real field, it does not represent −1. Thus
n· < 1 >6= 0 for all positive integers n.

Recall that a field K is called quadratically closed if every element of K is a
square of an element of K. Obviously the complex number field C, as well as any
algebraically closed field, is quadratically closed. It turns out that all finite fields
of characteristic two are quadratically closed.
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Example 2. Let K be a quadratically closed field. Then the Witt group W (K) is
the 2-element group.

Since K is quadratically closed, for all a1, . . . , an ∈ K (a1, . . . , an) ∼= (1, . . . , 1).
Thus each class < U > in W (K) can be written in the form:

< U >=< a1, . . . , an >=< 1, . . . , 1 >= n· < 1 > .

Since −1 is a square, for each nonsingular symmetric space U we have U ∼= −U , so:

2· < U >=< U > + < U >=< U > + < −U >= 0,

in particular 2· < 1 >= 0. Therefore < U >= n· < 1 >=< 0 > or < 1 >,
depending on the parity of n and teh Witt group W (K) consists of two elements 0
and < 1 >, where < 1 > is of order 2.

Example 3. The Witt group W (R) of the field of real numbers is an infinite cyclic
group, W (R) ∼= Z.

As we already know, < 1 > is an element of infinite order. Let < U > be
a nonzero class and consider the presentation < U >=< a1, . . . , an >, where
(a1, . . . , an) is an anisotropic space. Using the same techniques as in the proof of the
well-known inertia theorem (see [3] page 104) we conclude that either (a1, . . . , an) ∼=
(1, . . . , 1) or (a1, . . . , an) ∼= (−1, . . . ,−1). In the first case we have< U >= n· < 1 >
and in the second case < U >= n· < −1 >.

Now we shall introduce the notion of the dimension index. For an arbitrary
field K define the map e : W (K) → Z/2Z by sending the class < U > into
dimU(mod2). Observe, that e is a well defined group epimorphism. The well-
definedness and surjectivity are obvious and it is a group homomorphism as the
following computation shows:

e(< U > + < V >) = e(< U ⊥ V >) = dim(U ⊥ V ) + 2Z
= (dimU + dimV ) + 2Z = (dimU + 2Z) + (dimV + 2Z)
= e(< U >) + e(< V >).

The homomorphism e is called the dimension index homomorphism. As an im-
mediate consequence of the isomorphism theorem we kave the following statement:

W (K)/ ker e ∼= Z/2Z.

6. Tensor products of bilinear spaces

We shall extend the notion of tensor products to bilinear spaces. For two bilinear
spaces (U,α) and (V, β) over a field K their tensor product is to be a bilinear space
(U ⊗ V, γ), where γ is a suitably chosen bilinear functional on the space U ⊗ V .
Consider the following diagram:

U × V × U × V

⊗
��

α·β

&&NNNNNNNNNNNN

U ⊗ V ⊗ U ⊗ V
h

// K

U ⊗ V × U ⊗ V

⊗

OO

γ

88qqqqqqqqqqqq
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Here α · β is the product of bilinear functionals α and β, that is the 4−linear map
α · β : U × V × U × V → K defined by:

α · β(u, v, u′, v′) = α(u, u′) · β(v, v′).

By the universal property of tensor products there is a linear map h : U ⊗V ⊗U ⊗
V → K such that:

h(u⊗ v ⊗ u′ ⊗ v′) = α(u, u′) · β(v, v′),

so that the upper triangle in our diagra commutes. Now ⊗ in the vertical bottom
line is the map that assigns to each pair of vectors w1, w2 ∈ U ⊗ V the simple
tensor w1 ⊗ w2 ∈ (U ⊗ V ) ⊗ (U ⊗ V ) and we define γ : U ⊗ V × U ⊗ V → K to
be the composition of the ⊗ and the map h. Thus γ(w1, w2) = h(w1 ⊗ w2) for all
w1, w2 ∈ U ⊗ V , in particular for the simple tensors u⊗ v, u′ ⊗ v′ ∈ U ⊗ V :

γ(u× v, u′ ⊗ v′) = h(u⊗ v ⊗ u′ ⊗ v′) = α(u, u′) · β(v, v′).

Since γ is the composition of the bilinear map ⊗ and the linear functional h, it is
bilinear itself.

To show that γ is uniquely determined observe, that each bilinear functional γ
on the space U ⊗ V satisfying:

γ(u× v, u′ ⊗ v′) = α(u, u′) · β(v, v′)

is uniquely determined on the set of all simple tensors u⊗v of the space U⊗V , and
these generate the space U⊗V . Hence, by bilinearity of γ it is uniquely determined
on the whole space U ⊗ V .

The bilinear functional γ on the space U ⊗ V is said to be the tensor product
of bilinear functionals α and β, written:

γ = α⊗ β.

The bilinear space (U ⊗ V, α ⊗ β) is said to be the tensor product of spaces
(U,α) and (V, β).

Now we shall investigate a matrix of the space (U ⊗ V, α ⊗ β). Suppose that
{u1, . . . , un} and {v1, . . . , vm} are bases for U and V and let A = [aij ], B = [bij ]
be matrices for U and V with respect to the appropriate bases. We know that
{ui⊗ vj : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}. We will find the matrix of U ⊗ V relative
to this basis. First we choose the following order of basis vectors:

u1 ⊗ v1, . . . , u1 ⊗ vm, u2 ⊗ v1, . . . , u2 ⊗ vm, . . . , un ⊗ v1, . . . , un ⊗ vm.

If C denote the matrix of the space U⊗V relative to the above basis, then we have:

C = [(α⊗ β)(ui ⊗ vj , uk ⊗ vl)] = [α(ui, uk) · β(vj , vl)] = [aikbjl],

thus:

C =


a11B a12B . . . a1n

a21B a22B . . . a2nB
...

...
. . .

...
an1B an2B . . . annB

 .
The matrix C is called the Kronecker product of matrices A and B and is denoted
by A⊗B.
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7. Witt ring and the fundamental ideal

Let K be any field and let W (K) be the Witt group of the field K. We shall
make it into a commutative ring by setting:

< U > · < V >=< U ⊗ V > .

Quite long and boring but straightforward computation shows that this multipli-
cation is well defined and (W (K),+, ·, < 0 >,< 1 >) is indeed a commutative ring
with identity, which is said to be the Witt ring of the field K. Observe that
each element of the Witt ring W (K) can be written in the form < a1, . . . , an >
for some a1, . . . , an ∈ U(K) and we have the following rules for computation in the
ring W (K):

< a1, . . . , an >=< b1, . . . , bm >⇔ (a1, . . . , an) ∼ (b1, . . . , bm),

< a1, . . . , an > + < b1, . . . , bm >=< a1, . . . , an, b1, . . . , bm >,

< a1, . . . , an > · < b1, . . . , bm >=< a1b1, . . . , a1bm, . . . , anb1, . . . , anbm > .

Structure of the Witt ring can be completely described only when we have solved
the classification problems for bilinear spaces over the field K. As was the case of
the Witt group we can check, that the Witt ring of a quadratically closed field is
isomorphic to the 2-element group and that the Witt ring of the field R is isomorphic
to the ring Z. We can also easily check that the dimension index map e : W (K) →
Z/2Z sending the class < U > into dimU(mod2) is a well defined ring epimorphism.
The ideal ker e is said to be the fundamental ideal of the Witt ring W (K) and
is denoted by I(K):

I(K) = {< U >∈W (K) : dimU ≡ 0(mod2)}.
From the isomorphism theorem of ring theory follows immediately that:

W (K)/I(K) ∼= Z/2Z.
We shall find a convenient set of generators of the fundamental ideal I(K). For
that purpose we introduce the notion of n−ary classes: we call the similarity class
< U >∈W (K) n−ary if it contains an n−dimensional space:

< U >=< a1, . . . , an >,

in particular for n = 1, 2, 3, 4 we speak of unary, binary, ternary and quater-
nary classes. We will carefully distinguish between generating I(K) as an ideal in
the Witt ring W (K) and as an additive group, the subgroup of the additive Witt
group W (K). The following theorem exhibits a set of generators for the ideal I(K)
viewed as an additive group:

Theorem 6. The fundamental ideal is additively generated by the following set of
binary classes:

{< 1, a >: a ∈ U(K)}.

Proof. The proof is rather trivial; given any element < U >=< a1, . . . , an > of the
Witt ring W (K), we can write

< a1, . . . , an >=< 1, a1 > + . . .+ < 1, an > −n· < 1 > .

Now if < a1, . . . , an > is an element of I(K), then it is even-dimensional, so n = 2m
and hence:

< a1, . . . , an >=< 1, a1 > + . . .+ < 1, an > −m· < 1, 1 > .
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�

8. Discriminant and the square of fundamental ideal

We know that a nonsingular isotropic plane P over a field K has the determinant
detP = (−1)U(K)2, hence for a metabolic space M = P1 ⊥ . . . ⊥ Pk we have
detM = (−1)kU(K)2. Any two metabolic spaces are similar, but when −1 /∈
U(K)2 the determinant assumes two distinct values. It follows that the determinant
is not a similarity invariant. To modify the determinant function to make it well
defined on similarity classes we introduce the notion of the discriminant. More
precisely, let U be a nonsingular bilinear space over a field K. The discriminant
of the space U is the element of the square class group U(K)/U(K)2 defined as
follows:

discU = (−1)
n(n−1)

2 detU,

where n = dimU .
Observe that if U ∼ V then discU = discV . Indeed, let M1 ⊥ U ∼= M2 ⊥ V ,

where M1,M2 are metabolic and let dimM1 = 2p, dimM2 = 2q, dimU = n and
dimV = m. Therefore:

2p+ n = dim(M1 ⊥ U) = dim(M2 ⊥ V ) = 2q +m

and
(−1)p detU = det(M1 ⊥ U) = det(M2 ⊥ V ) = (−1)q detV.

Thus n−m is an even number, hence n2 −m2 is divisible by 4, and so:

2p+ n(n− 1)− (2q +m(m− 1)) = 2(m− n) + n2 −m2 ≡ 0(mod4, )

hence also:

p+
n(n− 1)

2
≡ q +

m(m− 1)
2

(mod2)

and finally:

discU = (−1)
n(n−1)

2 detU = (−1)p+
n(n−1)

2 (−1)p detU

= (−1)q+
m(m−1)

2 (−1)q detV = (−1)
m(m−1)

2 detV
= discV

The above observation allows us to extend the notion of discriminant to the
similarity classes: the discriminant of the similarity class < U > is defined to
be the common value discU of discriminants of all spaces in the class < U >. The
discriminant is thus a well defined map:

disc : W (K) → U(K)/U(K)2.

Unfortunately, this map is not a homomorphism: for take a field K with −1 /∈
U(K)2. Then we have disc < 1 >= U(K)2, disc < 1, 1 >= −U(K)2 and so:

disc(< 1 > + < 1 >) = −U(K)2 6= U(K)2 = disc < 1 > ·disc < 1 > .

However, if we restrict ourselves to the fundamental ideal, the situation changes.
Namely we have the following theorem:

Theorem 7. The restriction disc : I(K) → U(K)/U(K)2 is an epimorphism of
the additive group of the ideal I(K) onto the square class group U(K)/U(K)2.
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Proof. Let < U > and < V > be n−ary and m−ary classes. Since both numbers
are even n2 +m2 − (n+m)2 is divisible by 4, so:

n2 − n+m2 −m ≡ (n+m)2 − (n+m)(mod4)

and we have:
n(n− 1)

2
+
m(m− 1)

2
≡ 1

2
(n+m)(n+m− 1)(mod2).

Now the following computation proves our theorem:

disc(< U > + < V >) = disc(< U ⊥ V >)

= (−1)
1
2 (n+m)(n+m−1) detU · detV

= (−1)
n(n−1)

2 detU(−1)
m(m−1)

2 detV
= disc < U > ·disc < V >

�

We proceed to the less obvious problem of determining the kernel of discriminant
homomorphism. First observe, that if 0 6=< U >∈ ker disc then dimU ≥ 4. It is
clear that U is a nonzero space of even dimension, so it suffices to check that
dimU 6= 2. Assume a contrario that U ∼= (a, b). Then U(K)2 = disc < U >=
disc < a, b >= −abU(K)2, so bU(K)2 = −aU(K)2 and thus < U >=< a, b >=<
a,−a >= 0, which is impossible.

Next, all quaternary classes < 1, a, b, ab > have discriminants equal to U(K)2

and thus they belong to the ker disc. In general the quaternary class < a, b, c, d >
belongs to the ker disc iff. there exist x, y ∈ U(K) such that:

< a, b, c, d >=< a > · < 1, x > · < 1, y > .

Indeed, if < a, b, c, d >∈ ker disc then U(K)2 = disc < a, b, c, d >= abcdU(K)2 , so
dU(K)2 = abcU(K)2 and hence:

< a, b, c, d > = < a, b, c, abc >

= < a >< 1, ab, ac, bc >
= < a >< 1, ab >< 1, ac >

as desired. Conversely, since disc < a >< 1, x >< 1, y >= disc < a, ax, ay, axy >=
U(K)2, every class of the form < a >< 1, x >< 1, y > lies in the kernel of discrim-
inant.

Now observe that since < 1, x > and < 1, y > belong to the fundamental ideal,
their product < 1, x, y, xy > belongs to the square of the ideal I(K), denoted I2(K).
In the fact more general proposition holds, namely the ideal I2(K) is additively
generated by the following set:

{< 1, a, b, ab >: a, b,∈ U(K)}
To show that recall that we already know that I(K) is additively generated by the
binary classes < 1, a >, a ∈ U(K), so every element in I(K) is the sum of products
xy, x and y being finite sums of classes of the form < 1, a >. Multiplying out we
get a finite sum of the classes < 1, a, b, ab >.

That means, that I2(K) ⊂ ker disc. It appears that the opposite inclusion holds:
we have the following theorem due to Pfister:

Theorem 8. I2(K) = ker disc
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Proof. Let < U > be a nonzero even-dimensional class of discriminant U(K)2,
n = dimU . We know that n ≥ 4 and if n = 4 then < U >=< a, b, c, d >=< a ><
1, x >< 1, y >∈ I2(K). Hence we may assume that:

< U >=< a1, . . . , an >

where n ≥ 6 and n ≡ 0(mod2). We proceed by induction on n. First observe that:

< a, b, c, d >=< 1, a, b, ab > + < 1, c, d, cd > − < 1, 1, ab, ab > + < ab,−cd >
and thus for each quaternary class we have:

< a, b, c, d > +I2(K) =< ab,−cd > +I2(K).

For now we can write:

< U > +I2(K) = < a1, a2, a3, a4 > + < a5, . . . , an > +I2(K)
= < a1a2,−a3a4 > + < a5, . . . , an > +I2(K)

and since I2(K) ⊂ ker disc:

< U > − < a1a2,−a3a4, a5, . . . , an >∈ I2(K) ⊂ ker disc,

but < U >∈ ker disc, hence it follows that:

< V >=< a1a2,−a3a4, a5, . . . , an >∈ ker disc.

Now < V > is an (n − 2)−ary class, so by inductive hypothesis < V >∈ I2(K).
But < U > − < V > also belongs to I2(K) and thus < U >∈ I2(K). �

As an immediate consequence of the Pfister theorem and the isomorphism the-
orem we have the following isomorphism of groups:

I(K)/I2(K) ∼= U(K)/U(K)2.

In the case when W (K) is finite this gives another useful equality. Since disc :
I(K) → U(K)/U(K)2 is an epimorphism, U(K)/U(K)2 is also finite and since
W (K)/I(K) ∼= Z/2Z, |W (K)| = 2 · |I(K)|. Now |I(K)| = |U(K)/U(K)2| · |I2(K)|,
which gives:

|W (K)| = 2 · |I2(K)| · |U(K)/U(K)2|.

9. Quadratic forms

A homogeneous polynomial of degree 2 in n indeterminates is said to be a qua-
dratic form in n indeterminates. In other words a quadratic form f is an expres-
sion:

f = f(X1, . . . , Xn) = c11X
2
1 + c12X1X2 + . . . + c1nX1Xn

+ c22X
2
2 + . . . + c2nX2Xn

. . .
...

+ cnnX
2
n

The quadratic form f is completely determined by the upper triangular coefficient
matrix C = [cij ] (where cij = 0 for i > j) and it is often convenient to use the
matrix notation:

f = f(X) = XCXT ,

where X = [X1, . . . , Xn]. We associate with f the following polynomial:

P = P (X,Y ) = XCY T
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in 2n indeterminates, where X = [X1, . . . , Xn] and Y = [Y1, . . . , Yn]. Observe that:

P (Y,X) = Y CXT = (XCY T )T = XCTY T ,

so P (X,Y ) = P (Y,X) only if C is diagonal. Furthermore:

f(X + Y ) = (X + Y )C(X + Y )T

= XCXT +XCY T + Y CXT + Y CY T

= f(X) + P (X,Y ) + P (Y,X) + f(Y ).

The polynomial F given by:

F (X,Y ) = P (X,Y ) + P (Y,X)

is called the symmetric bilinear form corresponding to the quadratic form f . The
name ”symmetric bilinear form” refers to the fact that the polynomial F satisfies
the following identities:

F (X,Y ) = F (Y,X), F (X + Y,Z) = F (X,Z) + F (Y,Z),

F (aX, Y ) = aF (X,Y ).
Now from the definition of F follows, that F is completely determined by f , namely:

F (X,Y ) = f(X + Y )− f(X)− f(Y )

in particular we have:
F (X,X) = 2f(X).

Moreover, if charK 6= 2, then f is uniquely determined by F :

f(X) =
1
2
F (X,X).

Also the previous computations show that that the form F has the following matrix
representation:

F (X,Y ) = X(C + CT )Y T ,

where C + CT is symmetric and if chakK 6= 2, then the quadratic form f has the
following matrix representation:

f(X) = XSXT ,

where S = 1
2 (C + CT ) is symmetric. The process of passing from the upper trian-

gular matrix representation of the form to the symmetric matrix representation is
known as the symmetrization. If the symmetric matrix S is diagonal, then the
symmetric matrix representation is called diagonal representation. It is easy to
verify that in the case of the field of the characteristics different from 2 the sym-
metric representation is unique and in the case of characteristics two the symmetric
representation exists if and only if S is diagonal.

Two basic problems in quadratic form theory are the representation prob-
lem and the classification problem. We say that a nonzero element a ∈ K is
represented by f over K if there are x1, . . . , xn ∈ K such that:

f(x1, . . . , xn) = a.

The set of all nonzero elements represented by f over K is said to be the value set
of the form f and is denoted by DK(f). The form f is said to be isotropic, if zero
is represented nontrivially - otherwise it is said to be anisotropic. If all nonzero
elements of K are represented by f , then f is called universal over K.
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The concept of classification of quadratic forms is based on the notion of equiv-
alence of quadratic forms. Two quadratic forms f and g over the same field K are
said to be equivalent, written f ∼= g, provided there exists a substitution:

X1 = p11Y1 + p21Y2 . . . pn1Yn,
...

...
...

. . .
...

Xn = p1nY1 + p2nY2 . . . pnnYn,

of indeterminates with a nonsingular matrix P = [pij ] called the transition matrix
with entries in K such that:

f(Y P ) = g(Y ).
It is routine to check that equivalence of quadratic forms is indeed an equivalence
relation.

10. Quadratic forms and bilinear spaces

We show how to associate symmetric bilinear spaces with quadratic forms over
K. Let f = XCXT be the upper triangular representation, let F (X,Y ) = XAY T

be the corresponding bilinear form, where A = C +CT . We know that the bilinear
form F determines a bilinear space (V, φ) over K with V ∼= A in a basis {v1, . . . , vn}
of the space V . We say that the symmetric bilinear space (V, φ) corresponds to
the quadratic form f . The dimension of the form is defined to be the dimension
of V . The quadratic form f is said to be nonsingular when V is nonsingular.

From now on we will assume that charK 6= 2. We are going to modify the concept
of the bilinear space V corresponding to the form f . Let f = f(X) = XSXT

be the symmetric representation of f , where S = 1
2 (C + CT ). The polynomial

B = B(X,Y ) = XSY T is said to be associated with the quadratic form f and
the symmetric bilinear space (U,α) that it defines is said to be associated with
the quadratic form f .

Observe that:

B(X,Y ) =
1
2
F (X,Y ), B(X,X) =

1
2
F (X,X) = f(X)

and that the norm of the vector x in the space (U,α) agrees with f(x) - that was not
the case of the space (V, φ). Moreover, since detA = ( 1

2 )n detS, where n = dim f ,
nonsingularity of f is equivalent to nonsingularity of (U,α). Similarly f is isotropic
over K if and only if (U,α) is isotropic. Finally, it is easy to check that if f and
g are two forms with symmetric representations f = XAXT and g = XBXT and
associated symmetric bilinear spaces U and V , then the following three concepts
are equivalent:

(1) isometry of bilinear spaces U and V ,
(2) congruence of matrices A and B,
(3) equivalence of quadratic forms f and g.

Thus assigning to every quadratic form f over K the associated symmetric bilin-
ear space (U,α) establishes a bijective correspondence between equivalence classes
of quadratic forms and isometry classes of symmetric bilinear spaces. This corre-
spondence preserves dimensions and determinants. The very natural question that
arises is of diagonalization of quadratic forms.

Lemma 2. Let charK 6= 2 and let a, b, c ∈ U(K)
(1) c ∈ DK(a, b) ⇔ (a, b) ∼= (c, abc),
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(2) 1 ∈ DK(a, b) ⇔ (a, b) ∼= (1, ab),
(3) a = b 6= 0 ⇒ (a, b) ∼= (a+ b, ab(a+ b)).

Proof. It suffices to show (1). By the previous theorem a field element c is repre-
sented by the quadratic form f = (a, b) iff. it is the norm of an anisotropic vector
of the associated space U with the diagonal matrix (a, b). Let c = q(v). Since c
is nonzero, the vector v is anisotropic. By the Gramm-Schmidt orthogonalization
theorem there is an orthogonal basis {v, v1} containing v - and thus V has the di-
agonalization (c, d). Hence (a, b) ∼= (c, d) for some d, and since a, b are nonzero, we
must have d ∈ U(K). Comparing determinants gives abU(K)2 = cdU(K)2, whence
dU(K)2 = abcU(K)2 and d = abc · e2, so:

(a, b) ∼= (c, abce2) ∼= (c, abc).

This happens iff. the quadratic form (a, b) is equivalent to the form (c, abc). �

As a result we have the following theorem:

Theorem 9. Let f be a quadratic form over a field K, charK 6= 2, let c ∈ DK(f).
There are a2, . . . , an ∈ K such that:

f ∼= (c, a2, . . . , an)

Proof. Let f = XSXT be the symmetric representation of the form f and let U be
the symmetric representation of f , let U be the associated symmetric bilinear space.
Then U ∼= S and c is the norm of an anisotropic vector. Using the same argument
as in the proof of the previous lemma we find elements a2, . . . , an ∈ K such that
U ∼= (c, a2, . . . , an). Hence the matrices S and (c, a2, . . . , an) are congruent and
thus f is equivalent to the form g = X(c, a2, . . . , an)XT . �

We can also introduce the concepts of direct orthogonal sum and of tensor prod-
uct of quadratic forms. Let f and g be quadratic forms in n and m indeterminates
X = [X1, . . . , Xn], Y = [Y1, . . . , Ym] and let

f = XCXT , g = Y DY T

be the upper triangular representations of f and g. The direct orthogonal sum
of quadratic forms f and g is defined to be the quadratic form f ⊥ g with the
following upper triangular matrix representation:

f ⊥ g = Z(C ⊥ D)ZT .

The tensor product of f and g is the form whose upper triangular form is of the
following type:

f ⊗ g = Z(C ⊗D)ZT .

11. Witt ring of quadratic forms

We will copy the construction of the Witt ring of similarity classes of nonsingular
symmetric bilinear spaces to the case of nonsingular quadratic forms. A quadratic
form H over K is said to be hyperbolic if it is equivalent to a direct orthogonal
sum of binary hyperbolic forms:

H ∼= h1 ⊥ . . . ⊥ hk.
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We define two quadratic forms f and g to be similar, written f ∼ g, if there are
hyperbolic forms H1 and H2 such that:

H1 ⊥ f ∼= H2 ⊥ g.

It is easily checked that ∼ is an equivalence relation and that both ∼= and ∼ are
compatible with direct orthogonal sum and tensor product of quadratic forms. The
class of quadratic forms similar to f is denoted < f > and said to be the similarity
class of the form f . On the set Wqf (K) of all similarity classes of nonsingular
quadratic forms over K we define the sum:

< f > + < g >=< f ⊥ g >

and the product:
< f > · < g >=< f ⊗ g >,

which are well defined on similarity classes. We distinguish the similarity class
< 0 > of the zero form and the class < 1 > of the 1-dimensional quadratic form
< 1 >= X2

1 . Now it is easy to check that (Wqf ,+, ·, < 0 >,< 1 >) is a commuta-
tive ring with identity and that this ring is isomorphic to the Witt ring W (K) of
similarity classes of nonsingular symmetric bilinear spaces over K:

Wqf (K) ∼= W (K).

The details of the proof are found in [8], pages 222 - 224.

12. Pfister forms

We shall prove the basic properties of Pfister forms following the simplified ap-
proach of Witt. Let f be a quadratic form over an arbitrary field F . A scalar
a ∈ U(K) is said to be a similitude factor of the quadratic form f , if f and its
scalar multiple af are equivalent quadratic forms:

f ∼= af

The set of all similitude factors will be denoted GK(f). Notice that GK(f) 6= 0
since 1 ∈ GK(f) and that GK(0) = U(K). Moreover, GK(f) forms a subgroup of
the multiplicative group and

U(K)2 ⊂ GK(f).

Indeed, let a ∈ U(K) and let f = XCXT be the upper trianglular representation.
Then a2f = aX · C · (aX)T , so substitution Y = (aI)X takes the form f to a2f
and thus f ∼= a2f and, consequently, a2 ∈ GK(f).

Now if a, b ∈ GK(f) then f ∼= af and f ∼= bf , hence abf = a(bf) ∼= af ∼= f , so
ab ∈ GK(f). Since GK(f) contains the squares, it follows that GK(f) is a subgroup
of U(K).

Now we will establish the connection between DK(f) and GK(f). We have the
following useful relationship:

GK(f) ⊂ DK(f) ⇔ 1 ∈ DK(f).

Clearly, 1 ∈ GK(f), hence if GK(f) ⊂ DK(f), then 1 ∈ DK(f). Conversely,
assume that 1 ∈ DK(f) and a ∈ GK(f). Let 1 = f(x). Since af ∼= f , there is a
substitution X = PY of variables such that af(PY ) = f(Y ). Taking Y = x we get
af(Px) = f(x) = 1. It follows that a−1 = f(y) ∈ DK(f) for y = Px, hence also
a = a2f(y) = f(ay) ∈ DK(f), as required.
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We will now exhibit a special type of diagonal forms representing 1 with a much
stronger relationship between the value set and the group of similitude factors. Let
K be an arbitrary field. The n−fold Pfister form over K, written ((a1, . . . , an)),
is the form of the type:

(1, a1)⊗ . . .⊗ (1, an).
We call the form (1) to be the 0-fold Pfister form.

If f = ((a1, . . . , an)) is an n−fold Pfister form and i1, . . . , in is a permutation of
1, . . . , n, then it is easy to find a suitable substitution of variables showing that

f ∼= ((ai1 , . . . , ain
)).

Obviously we have dim((a1, . . . , an)) = 2n. Also if charK 6= 2, then

det((a1, . . . , an)) = U(K)2.

If charK 6= 2, then the similarity classes < 1, a > of 1-fold Pfister forms over K
additively generate the fundamental ideal I(K) and the similarity classes of 2-fold
Pfister forms additively generate the square I2(K) of the fundamental ideal.

Over the fieldK of characteristic different from twoGK(1, a) = DK(1, a); indeed,
it suffices to show that DK(1, a) ⊂ GK(1, a). If b ∈ DK(1, a) then (1, a) ∼= (b, ab),
hence (1, a) ∼= b(1, a) and b ∈ GK(1, a), as desired. This result generalizes as
follows:

Theorem 10. Let f be a Pfister form over a field K of characteristic different
from two. Then:

GK(f) = DK(f)

Proof. We proceed by induction. The form f can be written as:

f = (1, a)⊗ g = g ⊥ ag

where g is an (n− 1)−fold Pfister form. It suffices to show that DK(f) ⊂ GK(f).
Let b ∈ DK(f). Then

b = x+ ay

where x, y ∈ DK(g) ∪ {0}. If y = 0, then b = x and by induction hypothesis
b ∈ GK(g). Thus we have:

bf = bg ⊥ abg ∼= g ⊥ ag = f.

If x = 0, then b = ay and:

bf = bg ⊥ abg = ayg ⊥ a2yg ∼= ag ⊥ g ⊥ f.

Finally, if x 6= 0 and y 6= 0, then we have x, y ∈ DK(g) = GK(g). Put z = x−1y.
Since GK(g) is a group, we have z ∈ GK(g). Write b = x + ay = x(1 + az) and
f = g ⊥ ag ∼= g ⊥ azg = (1, az)⊗ g. We have:

bf = x(1 + az) · (1, az)⊗ g ∼= x · (1, az)⊗ g

since 1 + az ∈ DK(1, az) = GK(1, az). Thus we have:

bf ∼= x · (1, az)⊗ g ∼= (1, az)⊗ xg ∼= (1, az)⊗ g ∼= f.

�

We will end this section with three important consequences of the above result.

Theorem 11. Let charK 6= 2 and let f be a Pfister form. Then DK(f) is a group
under multiplication.
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The proof is obvious. In order to state the next theorem we define the index
indf of a quadratic form f over a field of characteristic not equal to two to be the
number of hyperbolic planes in a Witt decomposition of the symmetric bilinear
space U associated with the form f .

Theorem 12. Let charK 6= 2 and let f be a Pfister form.
(1) f is isotropic iff. f is hyperbolic.
(2) Either indf = 0 or indf = 1

2 dim f .

Proof. Clearly indf = 0 iff. f is anisotropic and indf = 1
2 dim f iff. f is hyperbolic,

so (1) and (2) are equivalent and it suffices to show (1). Assume that the n-fold
Pfister form f is isotropic. Then n > 0. If n = 1 then f = (1, a) and by theorem 2
f is isotropic iff. f is hyperbolic. Now we proceed with induction. Let:

f = (1, a)⊗ g = g ⊥ ag.

If g is isotropic, then by induction hypothesis g is hyperbolic and so is f . If g is
anisotropic, then - since f is isotropic - there exist x, y ∈ DK(g) such that x+ay = 0.
That means that also x

y ∈ DK(g) and thus:

f = g ⊥ ag = g ⊥ −x
y
g ∼= g ⊥ −g

and the latter is hyperbolic. �

The third result is known as the Pure Subform Theorem. For a given form
f = ((a1, . . . , an)) we write:

f = (1) ⊥ f ′

where f ′ = (a1, . . . , an, a1a2, . . . , an−1an, . . . , a1 . . . an) is a quadratic form of di-
mension 2n − 1. If charK 6= 2 then f ′ does not depend on the diagonalization of
f : if (1) ⊥ f ′ = (1) ⊥ f ′′ then by the Witt cancellation theorem we get f ′ = f ′′.
The form f ′ is said to be the pure subform of the Pfister form f .

It is often necessary to decide whether or not a given 1-fold Pfister form (1, b)
is a factor (in the sense of tensor product) of the given n-fold Pfister form f . If
f ∼= (1, b) ⊗ g = g ⊥ bg, then f ′ ∼= g′ ⊥ bg ∼= g′ ⊥ (b) ⊥ bg′, so b is represented
by the pure subform f ′. The Pure Subform Theorem states that this necessary
condition is also sufficient.

Theorem 13. Let charK 6= 2 and let f be a n-fold Pfister form. If b ∈ DK(f ′)
then there are b2, . . . , bn such that:

f cong((b, b2, . . . , bn))

Proof. We proceed with induction on n. If n = 1 then f = (1, a) and f ′ = (a), so
b ∈ DK(f ′) = aU(K)2 and thus f ∼= ((a)) ∼= ((b)).

If n = 2 then f = ((a, c)) and b ∈ DK(f ′) = DK(a, c, ac). There are b2, b3 such
that (a, c, ac) ∼= (a, b2, b3). Comparing determinants gives U(K)2 = bb2b3U(K)2,
so b3U(K)2 = bb2U(K)2 and hence:

f = (1, a, c, ac) ∼= (1, b, b2, bb2) = ((b, b2)).

If n ≥ 3 then f = (1, a)⊗g = g ⊥ ag. Thus f ′ = g′ ⊥ ag and b ∈ DK(f ′) implies
that:

b = x+ ay
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where x ∈ DK(g′)∪{0} and y ∈ DK(g)∪{0}. If y = 0 then b = x and by induction
hypothesis there are b2, . . . , bn ∈ U(K) such that g ∼= ((b, b3, . . . , bn)). Hence:

f = (1, a)⊗ g ∼= ((b, a, b3, . . . , bn)).

If x = 0 then b = ay, so yg ∼= g and so

f = g ⊥ ag ∼= g ⊥ ayg = (1, ay)⊗ g = (1, b)⊗ g.

If x 6= 0 and y 6= 0 then by induction hypothesis there is a (n − 2)-fold Pfister
form m such that g ∼= (1, x)⊗m and g ∼= yg. Using these we have:

f = g ⊥ ag ∼= g ⊥ ayg
∼= (1, x)⊗m ⊥ (ay, axy)⊗m
∼= (1, x, ay, axy)⊗m
∼= (1, b, axy, abxy)⊗m

= (1, b)⊗ (1, axy)⊗m

where we also used (x, ay) ∼= (x+ ay, (x+ ay)axy). �

13. Prime ideals of the Witt ring and orderings

We shall determine minimal prime ideals of the Witt ring W (K) and show that
they are related to the orderings of the field K - this relationship becomes one of
the most important features of the theory of Witt rings.

Theorem 14. Let K be a field and let I be a prime ideal of W (K).
(1) W (K)/I is isomorphic either to the ring Z or to the finite field Fp.
(2) If W (K)/I ∼= Z then I is a minimal prime ideal.
(3) If W (K)/I ∼= Fp then I is a maximal ideal.

Proof. Let h : Z →W (K)/I be the unique homomorphism given by

h(z) = z < 1 > +I.

Since every similarity class in W (K) can be written as < a1, . . . , an >, to show
that h is surjective it suffices to prove that for every < a1, . . . , an >∈ W (K) there
is z ∈ Z such that:

< a1, . . . , an > +I = z < 1 > +I.
If n = 1 then for each a ∈ U(K):

(< a > − < 1 >)(< a > + < 1 >) =< a >2 − < 1 >= 0 ∈ I,
so < a > − < 1 >∈ I or < a > + < 1 >∈ I. In other words if I is a prime ideal
and a ∈ U(K), then:

< a > +I =< 1 > +I or < a > +I = − < 1 > +I.

Now we have for any n ≥ 1:

< a1, . . . , an > +I = < a1 > + . . .+ < an > +I
= ± < 1 > ± . . .± < 1 > +I = z < 1 > +I,

which proves surjectivity of h.
Now we will prove (1). Since I is an integral domain, kerh is a prime ideal

in Z, so kerh = 0 or kerh = pZ for a prime number p. Thus W (K)/I ∼= Z or
W (K)/I ∼= Fp.
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(3) is obvious since Fp is a field and it remains to prove (2). LetW (K)/I ∼= Z and
let I1 be a prime ideal in W (K) such that I1 ⊂ I. Thus the map f : W (K)/I1 →
W (K)/I given by:

f(< U > +I1) =< U > +I

is a ring epimorphism and:

ker f = {< U > +I1 :< U >∈ I} = I/I1.

To show that I1 = I and therefore I is minimal it suffices to show that f is an
isomorphism. To do that we will show that there is only one ring homomorphism
W (K)/I1 →W (K)/I and it is an isomorphism.

Notice that W (K)/I1 ∼= Z. Indeed, I1 is not maximal since I1 ⊂ I amd I is not
maximal since W (K)/I is not a field. According to (1) we have W (K)/I1 ∼= Z. On
the other hand W (K)/I ∼= Z, so that there exists an isomorphism i : W (K)/I1 →
W (K)/I.

Now since W (K)/I1 ∼= Z, every element in W (K)/I1 is an integer multiple of the
unit element < 1 > +I1. Every ring homomorphism W (K)/I1 → W (K)/I carries
< 1 > +I1 onto < 1 > +I and so also z < 1 > +I1 onto z < 1 > +I. Thus the
homomorphism is uniquely determined on the ring W (K)/P1 and it follows that
there is at most one such homomorphism. �

The above theorem shows that the prime ideals of W (K) split into two disjoint
classes: the maximal ideals of finite index and the minimal prime ideals of infinite
index. We also know that W (K) has a maximal ideal of index 2, namely the
fundamental ideal I(K). We shall show that I(K) is the only such ideal.

Lemma 3. Let K be a field and let I be a prime ideal of W (K).
(1) If 2 < 1 > +I = I then I = I(K).
(2) If W (K)/I ∼= F2 then I = I(K).

Proof. To say that 2 < 1 > +I = I is equivalent to say that < 1 > +I = − < 1 >
+I. For each a ∈ U(K):

(< a > − < 1 >)(< a > + < 1 >) =< a >2 − < 1 >= 0 ∈ I,

so < a > − < 1 >∈ I or < a > + < 1 >∈ I. In other words if I is a prime ideal
and a ∈ U(K), then:

< a > +I =< 1 > +I or < a > +I = − < 1 > +I.

Hence for each similarity class < a1, . . . , an >∈W (K) we have:

< a1, . . . , an > +I = < a1 > + . . .+ < an > +I
= ± < 1 > ± . . .± < 1 > +I = n < 1 > +I

But since 2 < 1 > +I = I it follows that:

< a1, . . . , an >∈ I ⇔ n < 1 > +I = 0 + I

⇔ n ≡ 0(mod2)
⇔ < a1, . . . , an >∈ I(K),

so I = I(K) as desired. This proves (1) and to show (2) observe that it W (K)/I ∼=
F2 then 2(< 1 > +I) = I, hence 2 < 1 > +I = I and by (1) I = I(K). �
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This lemma says that the fundamental ideal is the uniue ideal of the Witt ring
of index 2. Now we will exhibit an important relationship between prime ideals of
the Witt ring W (K) different from I(K) and the orderings of the field K. The key
results are the following two theorems. To prove them we need to introduce the
notion of the signature. Let f = (a1, . . . , an) be a nonsingular quadratic form over
a formally real field. Let s+P (a1, . . . , an) be the number of positive entries in the
diagonal matrix (a1, . . . , an) and s−P (a1, . . . , an) - of negative entries. The integer:

sgnP f = s+P (a1, . . . , an)− s−P (a1, . . . , an)

is said to be the signature of the form f at the ordering P of the field K. The
inertia theorem asserts that the signature is well defined and it is easy to check
that:

(1) If f ∼= g then sgnP f = sgnP g.
(2) sgnP (f ⊥ g) = sgnP f + sgnP g.
(3) sgnP (f ⊗ g) = sgnP f · sgnP g.
(4) If h is a hyperbolic form then sgnPh = 0.
(5) If f ∼ g then sgnP f = sgnP g.

The last properity allows us to extend the notion of signatures on the similarity
classes and define:

sgnP < f >= sgnP f.

We will need the following lemma:

Lemma 4. Let K be a formally real field and let P be an ordering of K.
(1) sgnP : W (K) → Z is a ring epimorphism.
(2) ker sgnP is a prime ideal.
(3) ker sgnP is generated by the set:

{< 1,−a >: a ∈ P}.

Proof. To prove (1) observe that:

sgnP (< f > + < g >) = sgnP < f ⊥ g >= sgnP (f ⊥ g)
= sgnP f + sgnP g

= sgnP < f > +sgnP < g >

Similarly we can show that sgnP preserves multiplication. Surjectivity follows from
the fact that sgnP (n < 1 >) = n for all n ∈ Z.

Now we have that W (K)/ ker sgnP
∼= Z and since Z is an integral domain

ker sgnP must be prime. To show (3) observe that if a ∈ P then sgnP < 1,−a >= 0
and so {< 1,−a >: a ∈ P} ⊂ ker sgnP . On the other hand if < f >∈ ker sgnP

then dim f is even and we can write f ∼= (a1, . . . , a2k). Thus we must have:

s+P (a1, . . . , a2k) = s−P (a1, . . . , a2k) = k.

Eventually renumbering the entries we can assume that a1, . . . , ak are all in P and
ak+1, . . . , a2k are in −P . Then:

< f > = < a1, ak+1 > + < a2, ak+2 > + . . .+ < ak, a2k >

= < a1 >< 1, a1ak+1 > + < a2 >< 1, a2ak+2 > + . . .+
+ < ak >< 1, aka2k >

where −aiai+k ∈ P for i ∈ {1, . . . , k}. �
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Now we can state and prove the mentioned theorems:

Theorem 15. Let K be any field.
(1) If the Witt ring W (K) has a prime ideal I 6= I(K), then the field K is

formally real and the set

P = {a ∈ U(K) :< 1,−a >∈ I}
is an ordering of the field K.

(2) Let K be a formally real field and let P be an ordering of K. Let I be the
ideal of the ring W (K) generated by the set:

{< 1,−a >∈W (K) : a ∈ P}.
Then I is a minimal prime ideal of the Witt ring W (K), I ⊂ I(K) and
I 6= I(K).

Proof. In order to show that P is an ordering we first observe that for a ∈ U(K):

a ∈ P ⇔< a > +I =< 1 > +I.

Indeed, a ∈ P iff. < 1 > − < a >=< 1,−a >∈ I. This gives immediately
P · P ⊂ P . We also get easily that P ∪ −P = U(K): if a ∈ U(K) is such that
a /∈ P , then < a > +I 6=< 1 > +I. For each a ∈ U(K):

(< a > − < 1 >)(< a > + < 1 >) =< a >2 − < 1 >= 0 ∈ I,
so < a > − < 1 >∈ I or < a > + < 1 >∈ I. In other words if I is a prime ideal
and a ∈ U(K), then:

< a > +I =< 1 > +I or < a > +I = − < 1 > +I.

That means that in our case < a > +I = − < 1 > +I. Thus < −a > +I =< 1 >
+I showing that −a ∈ P .

It remains to show that P + P ⊂ P , so let a, b ∈ P and c = a+ b. Observe that
c = 0, since otherwise b = −a and from < a > +I =< 1 > +I and < b > +I =<
1 > +I we get:

2 < 1 > +I =< a, b > +I =< a,−a > +I = I

so, by the previous lemma, I = I(K), contrary to the assumption. Thus c 6= 0 and
we have:

< a, b >=< c, d >

where d = abc. Here < d > +I =< a >< b >< c > +I =< c > +I and so:

< 1, 1 > +I =< a, b > +I =< c, d > +I =< c, c > +I.

We want c ∈ P or in other words < c > +I =< 1 > +I. Suppose this is not the
case, so that < c > +I = − < 1 > +I and so we have

< 1, 1 > +I =< c, c > +I =< −1,−1 > +I.

Thus:
2 < 1 > ·2 < 1 > +I = 4 < 1 > +I = I.

But I is prime, hence it follows that 2 < 1 > +I = I and this in turn gives I = I(K)
- a contradiction.

To show (2) recall that I is the kernel of the signature homomorphism and a
prime ideal, so we have ring isomorphism W (K)/ ker sgnP

∼= Z. This implies that
ker sgnP is a minimal prime ideal of the Witt ring. Moreover, I is generated by a
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subset of the fundamental ideal, so I ⊂ I(K) and I 6= I(K) since the ideals have
distinct indices in W (K). �

Now we will slightly improve the described relationship between ideals and or-
derings. The set of all prime ideals of a ring R is said to be the prime spectrum
of the ring R, denoted SpecR. We also define the minimal prime spectrum of
R, denoted MinSpecR as the set of all minimal prime ideals of R.

Theorem 16. Let K be a formally real field. Then the map

σ : XK →MinSpecW (K)

given by:
σ(P ) = ker sgnP

is a bijective correspondence between the orderings of the field K and the minimal
prime ideals of the Witt ring W (K). The inverse map π : MinSpecW (K) → XK

is given by:
π(I) = {a ∈ U(K) :< 1,−a >∈ I}.

Proof. To prove the theorem it is sufficient to show that π◦σ and σ◦π are identities
on XK and MinSpecW (K). Fix a P ∈ XK . We have:

π(σ(P )) = π(ker sgnP ) = {a ∈ U(K) :< 1,−a >∈ ker sgnP }
= {a ∈ U(K) : sgnP < 1,−a >= 0}
= {a ∈ U(K) : a ∈ P} = P.

Next fix a I ∈ MinSpecW (K). Then π(I) = P = {a ∈ U(K) :< 1,−a >∈ I}
and σ(P ) = ker sgnP , so we have to check that I = ker sgnP . Since I is a minimal
prime ideal it suffices to show that:

ker sgnP ⊂ I.

But the ideal ker sgnP is generated by the elements < 1,−a >, where a ∈ P , and
from the definition of P follows that each such binary class belongs to I. �

14. Pfister’s local-global principle

We shall describe the elements of special types of Witt ring in terms of informa-
tion we gathered on the prime ideals and we shall formulate the famous local-global
principle due to Pfister. Recall that for an arbitrary ring R NilR denotes the set
of all nilpotent elements of the ring R. This set is an ideal which is called the
nilradical of the ring R. The classical result form the commutative algebra states
that:

NilR =
⋂
{I : I ∈ SpecR}.

Thus in order to describe the nilpotent elements of the Witt ring W(K) we need
to know the intersection of all prime ideals in W (K). The results we have already
proved describe only the behaviour of the minimal prime ideals. However, observe
that every prime ideal of the Witt ring W (K) contains a minimal prime ideal.

Indeed, let I be a prime ideal of W (K). If K is not a real field, then the only
prime ideal in W (K) is the fundamental ideal I(K), since any other prime ideal
I would induce an ordering, according to the theorem 15. Thus I(K) is the only



THE ALGEBRAIC THEORY OF QUADRATIC FORMS - AN INTRODUCTION 25

prime ideal which therefore is minimal itself. If K is formally real with an ordering
P and I = I(K), then the ideal generated by the set

{< 1,−a >∈W (K) : a ∈ P}

is a minimal prime ideal contained in I(K) by theorem 15. Finally, if K is formally
real and I 6= I(K), then the set:

P = {a ∈ U(K) :< 1,−a >∈ I}

is an ordering of K and the subset:

S = {< 1,−a >∈W (K) : a ∈ P}

is contained in I, so that the ideal generated by S is contained in I. By theorem
15 this ideal is minimal and prime, which proves our assertion.

The above observation means, that:⋂
{I : I ∈MinSpecW (K)} =

⋂
{I : I ∈ SpecW (K)}.

To be more precise we state this as a separate theorem:

Theorem 17. Let K be an arbitrary field.
(1) NilW (K) =

⋂
{I : I ∈MinSpecW (K)}.

(2) If K is nonreal, then NilW (K) = I(K).
(3) If K is formally real, then NilW (K) =

⋂
{ker sgnP : P ∈ XK}

For the latter considerations we will need the notion of the total signature.
So far the signature sgnP has been viewed as a function with variable similarity
class < f > and fixed ordering P . It is also possible to change this point of
view. For each element < f > of the Witt ring W (K) we consider the function
Sgn < f >: XK → Z given by:

Sgn < f > (P ) = sgnP < f >

and call it the total signature of the similarity class < f >.
We have observed that sgnP : W (K) → Z is a ring epimorphism - we also should

view Sgn as a function on the Witt ring, that assigns to each < f >∈ W (K) a
function Sgn < f >. So Sgn is a map from the Witt ring of a real field K into the
set ZXK of function defined on the set XK with values in Z. We can give ZXK a
structure of a ring setting:

(S1 + S2)(P ) = S1(P ) + S2(P ), (S1 · S2)(P ) = S1(P ) · S2(P )

for S1, S2 ∈ ZXK . It is not surprising that the total signature map Sgn : W (K) →
ZXK defined by:

Sgn(< f >) = Sgn < f >

is a ring homomorphism. Indeed, for all < f >,< g >∈W (K) and for P ∈ XK we
have:

Sgn(< f > + < g >)(P ) = (Sgn < f ⊥ g >)(P ) = sgnP < f ⊥ g >

= sgnP (f ⊥ g) = sgnP f + sgnP g

= sgnP < f > +sgnP < g >

= (Sgn < f >)(P ) + (Sgn < g >)(P )
= (Sgn < f > +Sgn < g >)(P )
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Similarly one shows that Sgn(< f > · < g >) = Sgn < f > ·Sgn < g >. The total
signature is not, in general, an epimorphism. Neither it is a monomorphism - the
kernel kerSgn is an ideal of the Witt ring W (K) and it is a nontrivial question how
to describe this ideal. The celebrated local-global principle provides a neccesary
explanation. Now observe that in the view of the theorem 17 we can write:

NilW (K) = kerSgn

for every formally real field K.
We proceed to the study of the set TorsW (K) of all torsion elements of the Witt

ring W (K). It is easy to check that they form an ideal. We will restrict ourselves
to the case of formally real fields - it is possible to show that for nonreal fields we
have TorsW (K) = W (K). First observe that:

TorsW (K) ⊂ NilW (K).

Indeed, let x ∈ TorsW (K). There is a positive integer n such that nx = 0 ∈
W (K). Hence for every ordering P :

0 = sgnP 0 = shnPnx = n · sgnPx

and thus sgnPx = 0, so x ∈ ker sgnP for all P . Since NilW (K) =
⋂
{ker sgnP :

P ∈ XK} it follows that x ∈ NilW (K).
The main result to prove on torsion elements asserts that in the fact TorsW (K) =

NilW (K) for formally real fields. The proof of that fact requires a comparison of
the Witt rings of a field K and of its extension field E. To begin with let K be
a field of characteristic different from 2 and let E be any extension of K. Every
nonsingular form f over K can be viewed as a quadratic form over E. If f and
g are equivalent quadratic forms over K then there exists a nonsingular matrix P
with entries in K such that:

f(Y D) = g(Y )
and f and g are also equivalent as forms over E. Obviously converse is not true -
so from now on we shall specify the ground field we have in mind and write f ≡K g
or f ≡E g. Hence we have:

f ≡K g ⇒ f ≡E g

and similarly:
f ∼K g ⇒ f ∼E g.

We may extend this ”subscript notation” to the similarity classes and notice that
the similarity class < f >K uniquely determines the similarity class < f >E . In
view of that we can speak of a map i∗ : W (K) →W (E) given by:

i∗(< f >K) =< f >E .

This mapping turns out to be a ring homomorphism; for nonsingular quadratic
forms f and g over K we have:

i∗(< f >K + < g >K) = i∗(< f ⊥ g >K) =< f ⊥ g >E

= < f >E + < g >E

= i∗(< f >K) + i∗(< g >K)

A similar computation for multiplication is left to the reader. This homomorphism
is said to be induced by the inclusion map i : K ↪→ E. This mapping is, in
general, neither surjective nor injective. We will focus on determining the kernel of
the homomorphism i∗ induced by the quadratic extension.
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Let E = K(
√
a) where a ∈ U(K) \U(K)2. Since a is not a square in K but is a

square in E, the form (1,−a) is anisotropic over K and hyperbolic over E. Hence:

0 6=< 1,−a >K∈ ker i∗

More generally, for any quadratic form g overK and b ∈ U(K) the form (b,−ab) ⊥ g
is isotropic over E and (1,−a) ⊗ g is hyperbolic over E. We shall show that the
converse statements are true.

Theorem 18. Let E = K(
√
a) where a ∈ U(K) \ U(K)2.

(1) Let f be an anisotropic quadratic form over K. Then f is isotropic over E
iff. there is an element b ∈ U(K) such that:

f ≡K (b,−ab) ⊥ g

for a quadratic form g over K.
(2) Let f be an anisotropic quadratic form over K. Then f is hyperbolic over

E iff.
f ≡K (1,−a)⊗ g

for a quadratic form g over K.
(3) The kernel ker i∗ is the principal ideal:

ker i∗ =< 1,−a > ·W (K)

Proof. (1) Let f = (a1, . . . , an) be anisotropic over K and isotropic over E. Let
x1, . . . , xn, y1, . . . , yn ∈ K not all equal to zero be such that:

a1(x1 + y1
√
a)2 + . . .+ an(xn + yn

√
a)2 = 0.

Since a /∈ U(K)2 it follows that:∑
aix

2
i + a

∑
aiy

2
i = 0 and

∑
aixiyi = 0.

Let (U, β) be the n−dimensional bilinear space associated with f . It follows that:

f(x) + af(y) = 0 and β(x, y) = 0.

As not all xi, yi are zero, x 6= 0 or y 6= 0. But since f is anisotropic over K,
f(x) + af(y) = 0 implies that x 6= 0 and y 6= 0.

That means that x and y are anisotropic orthogonal vectors in U . By the Gramm-
Schmidt theorem we may pick an orthogonal basis for U starting with vectors x
and y, so that a diagonalization of U has the shape:

(f(x), f(y), b3, . . . , bn).

Setting b = f(y) we obtain that f(x) = −ab and:

f = (a1, . . . , an) ≡K (−ab, b, b3, . . . , bn) ≡ (b,−ab) ⊥ g.

(2) Let f = (a1, . . . , an) be anisotropic over K and hyperbolic over E. If n = 2
then the result follows from (1), since:

f ∼=K (b,−ab) ∼=K (1,−a)⊗ (b).

We proceed by induction on n. If f is hyperbolic over E then it is also isotropic
over E and by (1):

f ∼=K (b,−ab) ⊥ g
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where g is anisotropic over K (since f is). Here both f and (b,−ab) are hyperbolic,
so from the Witt decomposition it might be inferred that g is also hyperbolic over
E. By induction hypothesis g ∼=K (1,−a)⊗ g′ and hence:

f ∼=K (b,−ab) ⊥ (1,−a)⊗ g′ ∼=K (1,−a)⊗ ((b) ⊥ g′).

(3) follows immediately from (2). �

Before we proceed to the main results on torsion elements in Witt rings, we shall
prove one more lemma:

Lemma 5. Let K be a formally real field. For each x ∈ NilW (K) there exists an
integer n such that:

2nx = 0 ∈W (K)

Proof. Let x ∈ NilW (K) and suppose that for all positive integers 2nx 6= 0. Let f
be such anisotropic form that x =< f >. Consider the family:

F = {E ⊃ K : 2n < f >E 6= 0 for all positive integers n}.
Since K ∈ F , F 6= ∅. Let C = {Ej : j ∈ J} be a chain and let E =

⋃
{Ej : j ∈ J}.

As a sum of a family of fields, E is a field and it belongs to F . Indeed, suppose
that for some n 2n < f >E= 0 ∈W (K). Denote:

2n × f = f ⊥ . . . ⊥ f︸ ︷︷ ︸
2n

Thus the quadratic form 2n × f is hyperbolic over the field E, so we have the
equivalence 2n × f ∼=E h, where h = (1,−1) ⊥ . . . ⊥ (1,−1) is the hyperbolic form
of appropriate dimension. Hence for some nonsingular matrix D with entries in E
we have (2n × f)(Y D) = h(Y ). Every entry of D belongs to some field Ej and
since C is a chain, we may pick an i such that all entries are contained in the field
Ei. That means that 2n × f is hyperbolic over Ei, contrary to Ei ∈ F .

We have checked that all hypotheses of Zorn Lemma are satisfied, so we may pick
a maximal element F of the family F . Observe that F is formally real. Indeed,
suppose that F is nonreal and denote by s(F ) the smallest number n such that
−1 is a sum on n squares in F . Notice that there exists an integer m such that
s(K) = 2m. For if suppose that s(F ) > 1 and s(F ) is not a power of 2. Then there
is a positive integer m such that:

2m < s(K) < 2m+1.

Thus we can write 1 +A+B = 0, where A is the sum of less than 2m squares and
B is the sum of 2m squares. Multiplying by 1 +A yields:

(1 +A)2 + (1 +A)B = 0.

Since s(F ) > 2m here 1 + A 6= 0, hence also B 6= 0 and it follows that 1 + A ∈
DF (2m×(1)) and B ∈ DF (2m×(1)). But 2m×(1) is a Pfister form, so DF (2m×(1))
is a group and therefore (1 +A)B ∈ DF (2m × (1)). Now since

−1 =
(1 +A)B
(1 +A)2

which means that −1 is the sum of 2m squares in F , contrary to 2m < s(F ). Thus
we proved that s(F ) = 2m.

Now observe that the order of the unit element < 1 > in the additive group of
W (K) equals 2s(F ). Indeed, since s(F ) = 2m the form s(F ) × (1) = 2m × (1) is
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a Pfister form and thus DF (s(F ) × (1)) = GF (s(F ) × (1)). By definition of s(F ),
−1 ∈ DF (s(F )× (1)) and hence:

2m × (1) ∼= (−1)(2m × (1)) = 2m × (−1)

and thus:
2m × (1) ⊥ 2m × (1) ∼= 2m × (1) ⊥ 2m × (−1).

Since 2m×(1) ⊥ 2m×(1) is the (m+1)-fold Pfister form 2m+1×(1) and 2m×(1) ⊥
2m× (−1) is equivalent to the direct orthogonal sum of 2m binary hyperbolic forms
(1,−1), we have the following equality in the Witt ring:

2m+1× < 1 >= 0.

Therefore the additive order of < 1 > is a divisor of 2m+1 = 2s(F ) and it remains to
show that s(F )× < 1 >6= 0 in W (F ). Contrary to this, assume s(F )× < 1 >= 0.
Thus we may pick some x1, . . . , xs ∈ K not all equal to zero such that:

x2
1 + . . .+ x2

s = 0.

We may assume that xs 6= 0. Then we get:

(x1/xs)2 + . . .+ (xs−1/xs)2 = −1

which is a contradiction. Therefore the order of < 1 > is 2s(F ).
That means that every element of the Witt ring W (F ) is torsion and has a order

dividing 2s(F ), hence a power of two - contrary to the property defining the field
F . Thus we proved that F is formally real.

Now we shall show that F has at least four square classes. Notice that

(aU(F )2)2 = a2U(F )2 = U(F )2,

so the order of every element in U(F )/U(F )2 is 1 or 2 and in the case when
U(F )/U(F )2 is finite that means that the order of U(F )/U(F )2 is even. On the
other hand since F is formally real, U(F )/U(F )2 is nontrivial. Hence it suffices to
show that U(F )/U(F )2 has order different from 2. Otherwise F has two square
classes. Then P = U(F )2 is the unique ordering of F and ker sgnP is the zero
ideal, since for each a ∈ P = U(F )2 we have < 1,−a >= 0. Thus the epimor-
phism sgnP : W (F ) → Z becomes an isomorphism and it follows that W (F ) has
no nonzero nilpotent elements contradicting the fact that x =< f > is a nilpotent
in W (K), hence also in W (F ).

Since |U(F )/U(F )2| ≥ 4 we may choose an element a ∈ U(F ) which is neither
square nor negative sqare. Then also −1 is not a square and

F1 = F (
√
a) and F2 = F (

√
−a)

are quadratic extensions of F . By the maximality of F , F1, F2 /∈ F and there exist
positive integers n1, n2 such that:

2n1 < f >F1= 0 and 2n2 < f >F2= 0.

Taking n = n1 + n2 we get:

2n < f >F1= 0 and 2n < f >F2= 0.

By theorem 18 there are forms g1 and g2 over F such that:

2n < f >F =< 1,−a >F< g1 >F 2n < f >F< g2 >F
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Multiplying the above equalities by < −a >F and < a >F , respectively, and using
the fact that < −a > · < 1,−a >=< 1,−a > and < a > · < 1, a >=< 1, a > we
get:

< −a >F 2n < f >F = 2n < f >F and < a >F 2n < f >F = 2n < f >F

and thus:
< −a >F 2n < f >F =< a >F 2n < f >F

hence multiplying by < a >F :

< −1 > 2n < f >F = 2n < f >F

and finally:
2n+1 < f >F = 0

which contradicts the defining property of the field F . �

We have already observed that TorsW (K) ⊂ NilW (K). The above lemma
shows that also TorsW (K) ⊃ NilW (K) - in the fact we have proved something
more, namely every element has a 2-power order. Anyway, the following important
equality holds:

TorsW (K) = NilW (K)

Combining with the previous remarks we get:

TorsW (K) =
⋂
{ker sgnP : P ∈ XK}

Now let K be a formally real field with fixed ordering P , let f be an anisotropic
quadratic form over K. Let KP denote a real closure inducing the ordering P on
K. Then U(KP )2 is the unique ordering of KP and ker sgnP is the zero ideal, since
for each a ∈ U(KP )2 we have < 1,−a >= 0. Thus the epimorphism sgnU(KP )2 :
W (KP ) → Z becomes an isomorphism. Hence:

< f >KP
= 0 ⇔ sgnU(KP )2f = 0.

But since P is induced from the unique ordering U(KP )2 in KP and f is the form
over K:

sgnU(KP )2f = sgnP f

hence:
< f >KP

= 0 ⇔ sgnP f = 0.

Now since we can change P arbitrary, in view of the equality

TorsW (K) =
⋂
{ker sgnP : P ∈ XK}

we have:
< f >KP

= 0, P ∈ XK ⇔< f >∈ TorsW (K).

This result is known as the famous Pfister’s Local - Global Principle, first
proved in 1966. Since NilW (K) = kerSgn and TorsW (K) = NilW (K) we have
another version of this principle, which describes all torsion elements of W (K) in
terms of total signature:

TorsW (K) = kerSgn.
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15. T -forms and Pfister T -forms

From now on our main goal is to set up a theory of quadratic forms ”relative”
to a preordering T (or ”reduced” modulo T ). We will restrict ourselves only to
the case of field whose characteristic is different from two. This theory will lead
to a relative Witt ring denoted WT (K), which shares many of the properties of
the ordinary Witt ring W (K). Actually, WT (K) turns out to be isomorphic to a
certain quotient ring of W (K), namely:

W (K)/I

where I is the ideal generated by the set:

{< 1,−a >∈W (K) : a ∈ T}.
In the case when K is formally real and T is the sum of squares, this ideal clearly
corresponds with intersection of all minimal prime ideals (since each minimal prime
ideal is generated by the set {< 1,−a >∈W (K) : a ∈ P}, where P is some ordering
of K) and - as NilW (K) =

⋂
{I : I ∈ MinSpecW (K)} - we have the following

alternative description of the reduced Witt ring of a formally real field:

W (K)/NilW (K).

Therefore one could take this to be the definition of WT (K). However, such defi-
nition appears in some kind of ”magic” way and obscures the fact that there is a
reasonable quadratic form theory associated with WT (K). For better motivation
we shall first develop the relevant ”reduced” quadratic form theory relative to T
and then construct the Witt ring WT (K) from it.

Let T be a fixed preordering in K, that is such a set that K2 ⊂ T , T + T ⊂ T ,
T · T ⊂ T and T ( K. By a T -form of dimension n we mean a formal expression

f = (a1, . . . , an)T

where a1, . . . , a)n ∈ U(K). For such a T−form f and any ordering XT we define
the P -signature of f in the following way. Let s+P (a1, . . . , an) be the number of
those entries in the sequence a1, . . . , an that belong to P and s−P (a1, . . . , an) be the
number of those entries in the sequence a1, . . . , an that belong to −P The integer:

sgnP f = s+P (a1, . . . , an)− s−P (a1, . . . , an)

is said to be the P−signature of the form f . Clearly sgnP f ≡ dim f(mod2).
We can define the direct orthogonal sum and the tensor product of T -forms

as we did for ordinary forms, namely:

(a1, . . . , an)T ⊥ (b1, . . . , bm)T = (a1, . . . , an, b1, . . . , bm)T

and

(a1, . . . , an)T ⊗ (b1, . . . , bm)T = (a1b1, . . . , a1bm, . . . , anb1, . . . , anbm)T .

A straightforward calculation gives:

sgnP (f ⊥ g) = sgnP f + sgnP g

and
sgnP (f ⊗ g) = sgnP f · sgnP g.

Next, we say that two T -forms f and g are T -isometric (in symbols f ∼=T g)
if f and g have the same dimensions and the same signatures with respect to any
P ∈ XT . Notice that this definiton also agrees with the definition of equivalence
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of quadratic forms or - equivalently - isometry of bilinear spaces: it can be proved
(see [3] pages 104-105) that two bilinear spaces over the field of real numbers R are
isometric iff. they have the same dimensions and signatures. This result remains
true if we replace the field R with any field with two square classes (see [8] pages
108-109).

As was the case with ordinary quadratic forms, we can easily check that:

(a1, . . . , an)T
∼=T (a1t1, ldots, antn)

for t1, . . . , tn ∈ U(T ) and

(a, b)T
∼=T (a+ b, ab(a+ b))T

provided a + b 6= 0. Next, the binary hyperbolic T -form (1,−1)T is called T -
hyperbolic plane and the direct orthogonal sum of n T -hyperbolic planes is called
the hyperbolic space. Clearly a T -form is hyperbolic iff. its signature with respect
to any P ∈ XT is equal to zero. A T -form is said to be T -isotropic if there exist
t1, . . . , tn ∈ T not all zero such that:

a1t1 + . . .+ antn = 0.

To illustrate this notion consider the case of a formally real field with preordering
T =

∑
K2 being the set of sums of quares. To say that (a1, . . . , an)∑

K2 is
∑
K2-

isotropic means that there are some xij not all zero such that:

a1(x2
11 + . . .+ x2

1r1
) + . . .+ an(x2

n1 + . . .+ x2
nrn

) = 0.

Taking r = max{r1, . . . , rn} and eventually substituting xij = 0 for some i, j we
get:

(a1x11 + . . . , anxn1) + . . .+ (a1x1r + . . .+ anxnr) = 0
which means that the quadratic form

r(a1, . . . , an) = (a1, . . . , an) ⊥ . . . ⊥ (a1, . . . , an) = (a1, . . . , an, . . . , a1, . . . , an)

is isotropic. It this is the case we say that the quadratic form (a1, . . . , an) is weakly
isotropic. Obviously if K is pythagorean, that is

∑
K2 = K2, this will imply that

(a1, . . . , an) is isotropic.
We define the set of values of the T -form f = (a1, . . . , an)T to be:

DT (f) = {a1t1 + . . .+ antn 6= 0 : t1, . . . , tn ∈ T}.
If an element b ∈ U(K) belongs to DT (f) we say that b is represented by f .
Observe that, since T + T ⊂ T , T · T ⊂ T and K2 ⊂ T :

DT ((t1, . . . , tr)⊗ f) = DT (f) = DT (rf)

for any t1, . . . , tr ∈ T . This follows that for any natural number r:

f is T -isotropic ⇔ rf is T -isotropic .

We can also relate the notion of T -isotropy to the usual notion of isotropy as follows:

f is T -isotropic ⇔
∨

t1,...,tr∈U(T )

< t1, . . . , tr > ⊗f is isotropic.

The next result, which is considerably deeper, gives the analog of this for the notion
of hyperbolocity:

Theorem 19. For any T -form f the following three conditions are equivalent:
(1) f is T -hyperbolic;
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(2) << t1, . . . , tr >> · < f >= 0 in W (K) for some t1, . . . , tr ∈ U(T );
(3) < t1, . . . , tr > · < f >= 0 in W (K) for some t1, . . . , tr ∈ U(T ).

Proof. (2) ⇒ (3) and (3) ⇒ (1) are obvious. In order to prove (1) ⇒ (2) observe
that:

2n < a1, . . . , an >=
∑

e

< e1, . . . , en ><< e1a1, . . . , enan >>∈W (K)

where e = (e1, . . . , en) ranges over all such n-tuples that ei = ±1. To prove the
above identity we use induction by n. Notice that ei << eiai >>= ai << eiai >>,
so < e1, . . . , en ><< e1a1, . . . , enan >>=< a1, . . . , an ><< e1a1, . . . , enan >>
and therefore it suffices to show that:∑

e

<< e1a1, . . . , enan >>= 2n < 1 >∈W (K).

For n = 1 we have << a1 >> + << −a1 >>= 2 < 1 >∈W (K). For n > 1 denote
e′ = (e1, . . . , en−1) and write:∑

e

<< e1a1, . . . , enan >>=
∑
e′

<< e1a1, . . . , en−1an−1, an >>

+
∑
e′

<< e1a1, . . . , en−1an−1,−an >>

=
∑
e′

<< e1a1, . . . , en−1an−1 >> (<< an >> + << −an >>)

= 2
∑
e′

<< e1a1, . . . , en−1an−1 >>= 2n < 1 >∈W (K)

Now assume that f = (a1, . . . , an)T is T -hyperbolic. We shall try to apply the
above formula. Fix an n-tuple e and consider two cases. First, assume that the
preordering T [e1a1, . . . , enan] generated over T by {e1a1, . . . , enan} is different from
K. Then there exists an ordering P ⊃ T [e1a1, . . . , enan]. For this P we have:

ei ∈ P ⇔ ai ∈ P
and so:

sgnP < e1, . . . , en >= sgnP f = 0.
Thus half of the e′is are 1’s and the other half are -1’s, which gives (e1, . . . , en) =
0 ∈ W (K) so we can drop the corresponding term on the right side of the above
formula.

If T [e1a1, . . . , enan] = K then note that

T [e1a1, . . . , enan] \ {0} = DT (((e1a1, . . . , enan))T ).

In particular−1 ∈ DT (((e1a1, . . . , enan))T ) which implies that 2((e1a1, . . . , enan))T

is T -isotropic. By the previous remarks there exist t′1, . . . , t
′
m ∈ U(T ) such that

(t′1, . . . , t
′
m)((e1a1, . . . , enan))

is isotropic and so is:
((t′1, . . . , t

′
m, e1a1, . . . , enan))

which as a Pfister form is also hyperbolic. Therefore, multiplying both sides of our
main equality by a suitable Pfister form << t1, . . . , tr >> we get:

<< t1, . . . , tr >> · < f >= 0 ∈W (K)
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�

Observe that hyperbolicity implies isotropy, so if a T -form f is T -hyperbolic,
then it is also T -isotropic. Converse is true for Pfister forms; let a T -form f =
((b1, . . . , bn))T be T -isotropic. Thus for some ti, tij ∈ T not all zero:

t0 + t1b1 + . . .+ tnbn + t12b1b2 + . . . = 0.

Let P ∈ XT . The equation above implies that the b′js cannot all be in P , say
b1 ∈ −P . Then

agnP f = sgnP (1, b1)T sgnP ((b2, . . . , bn))T = 0

so f is T -hyperbolic.

16. Witt ring of T -forms

We start our construction of the Witt ring of T -forms with the following ”rep-
resentation” criterion, analogous to the theorem 9:

Theorem 20. Let f = (a1, . . . , an)T be a T -form. Then c ∈ DT (f) iff. there are
b2, . . . , bn ∈ U(K) such that:

f ∼=T (c, b2, . . . , bn)

Proof. Let c ∈ DT (f), say c = a1t1 + . . . + antn. Without loss of generality we
may assume that a1t1 + . . . + artr 6= 0 for all r (otherwise we can work with
(ar+1tr+1 + . . .+ antn)T ). We have:

(a1, . . . , an)T
∼=T (a1, a2)T ⊥ (a3, . . . , an)T

∼=T (t1a1, t2a2)T ⊥ (a3, . . . , an)T

∼=T (t1a1 + t2a2, t1a1t2a2(t1a1 + t2a2))T ⊥ (a3, . . . , an)T

∼=T (t1a1 + t2a2, a3, . . . , an, t1a1t2a2(t1a1 + t2a2))T

∼=T . . . ∼=T (a1t1 + . . .+ antn, b2, . . . , bn)T

Conversely, let t ∼=T (c, b2, . . . , bn)T . Then (a1, . . . , an,−c,−b2, . . . ,−bn)T is T -
hyperbolic and by theorem 19:

< t1, . . . , tr >< a1, . . . , an >=< t1, . . . , tr >< c, b2, . . . , bn >∈W (K)

for some t1, . . . , tr ∈ T . Since the left- and right hand sides above are forms
of equal dimensions, they must be equivalent as ordinary forms. In particular
t1c ∈ DT ((t1, . . . , tr)T f) = DT (f), so c ∈ t−1

1 DT (f) = DT (f). �

As a corollary we have the following:

Theorem 21. For any T -form f the following statements are equivalent:
(1) f is T -isotropic,
(2) f ∼=T (1,−1)T ⊥ g for some T -form g,
(3) DT (f) = U(K),
(5) there exists an element b ∈ U(K) such that both ±b ∈ DT (f).

Proof. (2) ⇒ (3) ⇒ (4) are clear, we shall show (4) ⇒ (1). Let ±b ∈ DT (f). This
follows that 2f is T -isotropic and since DT (f) = DT (rf) we have that f is isotropic
itself.
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(1) ⇒ (2). Let f = (a1, . . . , an)T be T -isotropic, that is a1t1 + . . . + antn = 0
where not all ti ∈ T are zero, say t1 6= 0. Then:

−a1t1 = a2t2 + . . .+ antn ∈ DT (a2, . . . , an)

and by the representation criterion

(a2, . . . , an)T
∼=T (−a1t1) ⊥ g

for some T -form g and therefore f ∼=T (a1t1,−a1t1)T ⊥ g ∼=T (1,−1)T ⊥ g. �

Observe that conditions (1) and (2) are analogous to those for quadratic forms,
but (3) and (4) are special features in the ”mod T” theory. Another important
corollary is the following ”Witt decomposition” theorem:

Theorem 22. For any T -form f there exist uniquely (up to isometry) determined
T -forms g and h such that f ∼=T g ⊥ h, where g is T -anisotropic and h is hyperbolic.

Proof. Existence: if f is T -anisotropic, there is nothing to prove. Assume that
f = (a1, . . . , an)T is isotropic. By the previous theorem f ∼=T (1,−1)T ⊥ g for
some T -form g′. Now we proceed by induction - if g′ is T -anisotropic, then we are
done - otherwise we decompose g′ as g′ ∼=T (1,−1)T ⊥ g′′ and finally we end up
with the decomposition f ∼=T h ⊥ g, where g is T -anisotropic and h is T -hyperbolic.

Uniqueness: as was the case with the existence part, we ”copy” the proof from
the ”normal” theory. Note that the Witt cancellation theorem, which was the key
result used in the proof in ”normal” theory, now is an immediate consequence of
the definitions we are using. �

Now we can translate the whole theory of the Witt ring in the ”normal” case
into the language of T -forms. We say that two T -forms f and g are T -similar,
denoted f ∼T g, if there exist T -hyperbolic T -forms h1 and h2 such that:

h1 ⊥ f ∼=T h2 ⊥ g.

It is easy to verify, that the similarity relation is indeed an equivalence relation.
Clearly the zero class < 0 >T consists of all hyperbolic T -forms and if f ∼=T g then
f ∼T g, but the converse is not true unless f and g are T -anisotropic (that follows
from the Witt decomposition theorem). If f ∼=T h ⊥ g is the Witt decomposition,
then f ∼T g, and thus every similarity class of T -forms contains an anisotropic
form. On the set WT (K) of all T -similarity classes we define addition:

< f >T + < g >T =< f ⊥ g >T

and multiplication:

< f >T · < g >T =< f ⊗ g >T

and therefore we make WT (K) into a ring, which is said to be the Witt ring of
T -forms over the field K. In order to verify that (WT (K),+, ·, < 0 >T , < 1 >T ) is
indeed a commutative ring with identity, we proceed in the similar manner as was
the case with ”normal” theory, extensively using the Witt decomposition theorem.

There are, however, a few differences that distinguish W (K) from WT (K). First
of all, for any T -form f and an integer r ≥ 1 f is T -hyperbolic iff. rf is T -hyperbolic.
The implication (⇒) is clear, to prove the converse assume that rf is hyperbolic for
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some r ≥ 1. From theorem 19 we conclude that < t1, . . . , ts >< rf >= 0 ∈W (K).
But:

< t1, . . . , ts >< rf > = < t1, . . . , ts > (< f > + . . .+ < f >︸ ︷︷ ︸
r

) =

= < t1, . . . , ts > (< 1, . . . , 1︸ ︷︷ ︸
r

>< f >) =

= (< t1, . . . , ts >< 1, . . . , 1︸ ︷︷ ︸
r

>) < f >

and since 1 = 12, U(K)2 ⊂ T and T · T ⊂ T that follows that < t′1, . . . , t
′
s′ ><

f >= 0 ∈ W (K), so that f is hyperbolic. That means, in particular, that WT (K)
is always torson-free as an Abelian group. However, we know that W (K) is never
torsion-free, unless K is formally real and pythagorean.

Now consider the mapping Φ : W (K) →WT (K) given by:

Φ(< a1, . . . , an >) =< a1, . . . , an >T .

It is easy to check that Φ is a ring epimorphism. We define the fundamental
ideal IT (K) as an image Φ(I(K)) of the fundamental ideal of similarity classes of
even-dimensional forms. Thus IT (K) becomes the ideal of T -similarity classes of
even-dimensional T -forms. Again, the n−th power In

T (K) is additively generated
by the T -smilarity classes of the n-fold T -Pfister forms << a1, . . . , an >>T :

In
T (K) =< {<< a1, . . . , an >>T : ai ∈ U(K)} > .

In the same way as in the absolute theory the isomorphism:

WT (K)/IT (K) ∼= Z/2/Z

can be checked. We can also introduce the notion of the determinant of the
T -form class f :

det f = a1 · . . . · an · U(T ) ∈ U(K)/U(T )

where f = (a1, . . . , an)T . This determinant is defined uniquely up to the isometry
of T -forms. Indeed, let f = (a1, . . . , an)T

∼=T (b1, . . . , bn)T = g and let c = a1 . . . an,
d = b1 . . . bn. It suffices to show that cd ∈ U(T ). Since the preordering T is the
intersection of all orderings P extending T , it suffices to show that sgnP c = sgnP d
for every P ∈ XT . Fix P ∈ XT and let a1, . . . , ar ∈ −U(P ), ar+1, . . . , an ∈ U(P ),
b1, . . . , bs ∈ −U(P ), bs+1, . . . , bn ∈ U(P ). Since

n− 2r = sgnP f = sgnP g = n− 2s

we have that r = s and hence sgnP c = (−1)r = (−1)s = sgnP d.
Having well defined determinant, we can define the discriminant of T -form and

therefore we are able to prove the second important isomorphism:

IT (K)/I2
T (K) ∼= U(K)/U(T )

using the same techniques as in the absolute thoery.
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17. Pfister’s local-global principle for T -forms

In the set XK of all orderings of the field K we define the Harrison sets:

H(a) = {P ∈ XK : a ∈ P}.
We introduce the topology in XK by using Harrison sets as a subbasis. It is
relatively easy to show that XK is a Boolean space, that is compact, Hausdorff
and totally disconnected. It turns out that for every Boolean space it is possible to
pick a field K such that the given space is homeomorphic to XK . For proof see [7]
pages 62 - 69.

Observe that the set XT of all orderings extending the given preordering T is
closed in XK . Indeed, let P ∈ XK \XT and fix an element a ∈ T \P . Then −a ∈ P
and H(−a) is a neighbourhood of P disjoint from XT . Thus XK \XT is open and
so XT is closed. In particular, XT is Boolean itself, i.e. Hausdorff, compact and
totally disconnected. A subbasis for the topology on XT is given by the relative
Harrison sets:

HT (a) = {P ∈ XT : a ∈ P}.
Now consider the set of integers Z with the discrete topology. Denote by

C(XT ,Z) the ring of continuous functions from XT to Z with addition and multi-
plication defined pointwise:

(φ+ ψ)(P ) = φ(P ) + ψ(P )

and
(φ · ψ)(P ) = φ(P ) · ψ(P ).

Since XT is compact, the image of any continuous function φ ∈ C(XT ,Z) is a finite
set and the family:

{φ−1({r}) : r ∈ φ(XT )}
forms a finite partition of XT into clopen sets. Conversely, let C1, . . . , Ck be a finite
partition of XT . We can define continuous function φ ∈ C(XT ,Z) by:

φ(P ) = n1 · χC1 + . . .+ nk · χCk

for arbitrary integers n1, . . . , nk. Therefore, as an Abelian group C(XT ,Z) is addi-
tively generated by the characteristic function χA of the clopen sets A ∈ XT .

Now let < f >T∈WT (K) be a T -similarity class. As was the case with absolute
theory, we can define the total signature SgnT < f >T : XT → Z by:

SgnT < f >T (P ) = sgnP f.

Observe that if f is a unary form f = (a), then SgnT < f >T (XT ) ⊂ {1,−1}.
Moreover:

SgnT < f >−1
T ({1}) = {P ∈ XT : a ∈ P} = HT (a)

and
SgnT < f >−1

T ({−1}) = {P ∈ XT : a ∈ −P} = HT (−a)
so SgnT < f >T is continuous. It is easy to check that:

SgnT < f ⊥ g >T = SgnT < f >T +SgnT < g >T

and
SgnT < f ⊗ g >T = SgnT < f >T ·SgnT < g >T ,

so that the mapping SgnT : WT (K) → C(XT ,Z) given by:

SgnT (< f >T ) = SgnT < f >T
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is well-defined ring homomorphism. We know that in the absolute theory the
mapping Sgn was - in general - neither an epimorphism nor a monomorphism and
that question of describing the kernel of Sgn was far from trivial. We proved that
kerSgn was equal to the set of nilpotent elements of W (K) and the celebrated
Pfister theorem stated that kerSgn = NilW (K) = TorsW (K). However, this is
not the case in the ”modulo T” theory. We already know that WT (K) is always
torsion-free, so that the question of describing torsion elements is out of our interest.
Not surprisingly, SgnT tuns out to be a monomorphism. Indeed, if SgnT (< f >T

) = 0, then sgnP f = 0 for all P ∈ XT , so that f is hyperbolic and therefore
< f >T = 0 ∈WT (K).

We shall slightly modify the ”local-global problem” for the ”modulo T” theory.
Consider the diagram:

W (K)
Φ

zzttttttttt
ŜgnT

%%KKKKKKKKKK

WT (X)
SgnT // C(XT ,Z)

where Φ : W (K) →WT (K) is given by:

Φ(< a1, . . . , an >) =< a1, . . . , an >T

and ŜgnT = SgnT ◦ Φ. The local-global principle ”modulo T” by Pfister, Becker,
Köpping, Bröcker and Scharlau states as follows:

Theorem 23. ker Φ = ker ŜgnT =< {< 1,−t >: t ∈ T} >⊂W (K)

Proof. Since SgnT is injective, kerΦ = ker ŜgnT . Clearly sgnP < 1,−t >= 0 for
all P ∈ XT , so ker ŜgnT ⊃< {< 1,−t >: t ∈ T} >. Conversely, let < f >=<
a1, . . . , an >∈ ker ŜgnT . Denote I =< {< 1,−t >: t ∈ T} >. If n = 0 there is
nothing to prove. It n > 0, we proceed by induction. f viewed as a T -form is
T -hyperbolic and hence T -isotropic. Thus for some ti ∈ T not all zero:

t1a1 + . . .+ tnan = 0.

Let:

a′i =
{
ai, if ti = 0
tiai, if ti 6= 0

and consider f ′ = (a′1, . . . , a
′
n). In W (K) we have:

< f > − < f ′ >=
∑
ti 6=0

ai < 1,−ti >∈ I]

so it suffices to show that < f ′ >∈ I. But since f ′ is isotropic, we have f ′ ≡
(1,−1) ⊥ f ′′ for some (n − 2)-dimensional form f ′′. Clearly ŜgnT (< f ′′ >) =
ŜgnT (< f ′ >) = ŜgnT (f) = 0, so by the inductive hypothesis we have f ′′ ∈ I and
hence f ∈ I. �
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Consider the case when T =
∑
K2 in a formally real field K. Then XT = XK

and the theorem above gives:

kerSgn = < {< 1,−a >: a ∈
∑

K2} >

=
⋂

P∈XK

< {< 1,−a >: a ∈ P} >

=
⋂
{kersgnP : P ∈ XK}

and we get back the classical Pfister local-global principle. But we also know that⋂
{kersgnP : P ∈ XK} = TorsW (K) and that Φ is an epimorphism, so we have:

W∑
K2(K) ∼= W (K)/ ker Φ = W (K)/ ker ̂Sgn∑

K2 = W (K)/TorsW (K).

This ring, usually denoted Wred(K), is called the reduced Witt ring of K.

18. Spaces of orderings

We fix a proper preordering T ⊂ K and denote GT = U(K)/U(T ). This group is
naturally isomorphic with a subgroup of {−1, 1}XT . Indeed, each a ∈ U(K) defines
a function a : XT → {−1, 1} given by:

a(P ) =
{

1, if a ∈ P
−1, if a ∈ −P

Clearly ab = a · b, so the mapping:

a 7→ a

defines a group homomorphism from U(K) into {−1, 1}XT . Clearly U(T ) is con-
tained in the kernel of this homomorphism. Conversely, if a /∈ U(T ), then there
exists P ∈ XT such that a ∈ −P , so that a(P ) = −1. Thus the above function
is injective and by the isomorphism theorem GT = U(K)/U(T ) is isomorphic to
a certain subgroup of {−1, 1}XT . The elements of GT would be therefore denoted
often as a.

Later we will introduce the notion of quadratic forms over spaces of orderings.
For use of this paragraph, we shall speak of so called forms with entries in GT as
of n-tuples f = (a1, . . . , an). The number n here is called the dimension of the
form f . The product a1 · . . . · an ∈ GT is called the determinant of f and for each
P ∈ XT the sum sgnP f =

∑n
i=1 ai(P ) ∈ Z is said to be the signature of the form

f . We say that b ∈ GT is represented by f if for some t1, . . . , tn ∈ T we have
b =

∑n
i=1 aiti. The set of all elements b ∈ GT represented by f is called the value

set of f and is denoted by D(f). Observe that D((a)) = {b} and for n ≥ 3:

b ∈ D((a1, . . . , an)) ⇔ b ∈ D((a1, c))

for some c ∈ D((a2, . . . , an)). Indeed, suppose that b = a1t1 + . . . + antn. If
a2t2 + . . . + antn 6= 0, take c = a2t2 + . . . + antn. If a2t2 + . . . + antn = 0 then
b = a1t1 = a1t1 + c0, so we can choose arbitrary c.

Therefore the study of value sets reduces (by induction) to the 2-dimensional
case. The following lemma gives a complete description of the case of value sets of
2-dimensional forms:

Lemma 6. D(a1, a2) = {b :
∧

P∈XT
b(P ) = a1(P ) ∨ b(P ) = a2(P )}.
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Proof. Let b ∈ D(a1, a2) and let P ∈ XT . Then b = a1t1 +a2t2. If a1(P ) = −a2(P )
then clearly b(P ) = a1(P ) or b(P ) = a2(P )}. If a1(P ) = a2(P ) = 1 then -
since b = a1t1 + a2t2 - b(P ) = 1. Similarly, if a1(P ) = a2(P ) = −1 then - since
b = a1t1 + a2t2 - b(P ) = −1.

Assume that for all P ∈ XT b(P ) = a1(P ) or b(P ) = a2(P ). Suppose that
b /∈ Ta1 + Ta2, that is b/a1 /∈ T + Ta2/a1. Consider the preordering T ′ = T [a2

a1
] =

T +T a2
a1

and let P be such ordering extending T ′ that b
a2

/∈ P . Obviously P ∈ XT .
Furthermore, a2

a1
(P ) = 1 and a2

a1
(P ) = −1. Thus a1(P ) = a2(P ) and b(P ) = −a1(P )

- a contradiction. �

The next result shows that every represented element has a ”transversal” repre-
sentation:

Lemma 7. Let a1, . . . , an, b ∈ U(K). TFAE:
(1) b ∈ D((a1, . . . , an))
(2) b = a′1 + . . .+ a′n for some a′i ∈ U(K) such that a′i = ai.

Proof. (2) ⇒ (1) is clear, so let’s prove the converse. Let b = a1t1 + . . . + antn.
Since p = (p+1

2 )2− (p−1
2 )2 we get a1+...+an

b = r2− s2 = (1 + r2)− (1 + s2) for some
r, s ∈ K. Thus

(1 + r2)b = a1 + . . .+ an + (1 + s2)b =
n∑

i=1

(1 + (1 + s2)ti)ai

and we may set a′i = 1+(1+s2)ti

1+r2 ai. �

Now we can proceed to the definition of a space of orderings. Recall that a
character on a group G is a group homomorphism x : G → {−1, 1}. The group of
all characters is denoted by χ(G). The space of orderings is a pair (X,G) satisfying
the following axions:

(1) X 6= ∅, G < {−1, 1}X , const.− 1 ∈ G and:∧
x,y∈X

x 6= y ⇒ (
∨

a∈G

a(x) = a(y))

Observe that we can construct a natural embedding of X into χ(G) by
identifying:

x 7→ (G 3 a 7→ a(x) ∈ {−1, 1}).
The set of all such c ∈ G that either c(x) = a(x) or c(x) = b(x) for each
x ∈ X will be called the value set and denoted by D(a, b).

(2) If x ∈ χ(G) satisfies x(const.− 1) = −1 and:∧
a,b∈ker(x)

D(a, b) ⊂ ker(x)

then x is in the image of the natural embedding X ↪→ χ(G).
(3)

∧
a1,a)2,a3∈G(

∨
c∈D(a2,a3)

b ∈ D(a1, c)) ⇒ (
∨

d∈D(a1,a2)
)

Notice that if x ∈ X is viewed as a character x ∈ χ(G) then we clearly have:

x(−1) = (−1)(x) = −1

and thus if a, b ∈ ker(x) then D(a, b) ⊂ ker(x). Thus the axion (2) is just saying
that every character on G having these properties is in X. Elements of X are often
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referred to as orderings and ker(x) is sometimes called the positive cone of x. The
following theorem explains this notation:

Theorem 24. If T is a proper preordering in a formally real field K, then the pair
(XT , GT ) is a space of orderings.

Proof. Since T is proper, XT 6= ∅. By one of the previous lemmas GT can be viewed
as a subgroup of {−1, 1}XT and - clearly - −1 ∈ GT plays the role of the const.− 1
function. Fix P,Q ∈ XT such that P 6= Q and let a ∈ P be an element such that
a /∈ Q. Thus a(P ) = 1 and a(Q) = −1, so GT separates points in XT and axion
(1) is satisfied.

Let x ∈ χ(GT ) be such a character that x(−1) = −1 and suppose that:∧
a,b∈ker(x)

D(a, b) ⊂ ker(x).

Let P = {a ∈ U(K) : a ∈ ker(x)} ∪ {0}. Clearly T ⊂ P (if a ∈ T then a = 0 ∈
GT = U(K)/U(T )), P ∪ −P = K (let a ∈ U(K) be such that a /∈ ker(x); then
x(a) = −1, so x(−a) = 1 and −b ∈ ker(x)), P ∩ −P = {0} (let a ∈ U(K) be such
that a ∈ ker(x) and −a ∈ ker(x); then x(a) = 1 and x(−a) = 1 which implies that
a = 0), P ·P ⊂ P (let a, b ∈ U(K) be such that x(a) = 1 and x(b) = 1; then clearly
x(a · b = 1) and P +P ⊂ P (let a, b ∈ U(K) be such that a ∈ ker(x) and b ∈ ker(x);
if a + b = 0, we are done; if a + b 6= 0then D(a, b) ⊂ ker(x) and a+ b ∈ D(a, b) -
indeed a + b = 12a + 12b; hence a+ b ∈ D(a, b) and it follows that x(a+ b) = 1).
Thus P ∈ XT and x is the character on GT corresponding to P .

Let a1, a2, a3 ∈ GT and suppose that for some c ∈ D(a2, a3) we have b ∈ D(a1, c).
Using the recently proved characterization of D(a2, a3) we have c = t′2a2 + t′3a3 and
then - using the same characterization for D(a1, c) - we have b = t1a1 + t2a2 + t3a3.
If t1a1 + t2a2 6= 0 then we may take d = t1a1 + t2a2 so that b ∈ D(d, a3). Otherwise
b = t3a3 and we may choose an arbitrary d ∈ D(a1, a2). �

We shall give a natural topology to the space (X,G) - namely the weakest topol-
ogy such that functions:

a : X → {−1,−1}, a ∈ G

are continuous (with discrete topology on {−1, 1}). It is easy to observe that if we
give to the group χ(G) the natural topology, that is the weakest topology such that
multiplication in χ(G) is continuous, then the topology induced by the embedding:

X ↪→ χ(G)

on the set X is the same as the topology defined above and that the sets:

U(a) = {x ∈ X : a(x) = 1}

for a subbasis for this topology. Using the same methods as for the set XF we can
prove that (X,G) is a Boolean space (see [5] page 23). Spaces of orderings form
a category, that is we can speak of morphisms of spaces of orderings. Namely a
morphism from a space of orderings (X,G) to a space of orderings (Y,H) is a
mapping α : X → Y such that: ∧

a∈H

a ◦ α ∈ G.
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In particular every morphism α induces a group homomorphism:

a 7→ a ◦ α
from G to H. Clearly α is continuous, since α−1(U(a)) = U(a ◦ α). An isomor-
phism from (X,G) to (Y,H) is a morphism α : X → Y which is bijective and such
that the induced group homomorphism:

a 7→ a ◦ α
is also bijective. Next, we say that a space of orderings (X,G) is realized by
the preordering T in the field K if (X,G) ∼= (XT , GT ). Notice that the question
whether a given space (X,G) is realized by the preordering

∑
K2 for some field is

- in general - very hard.

19. Quadratic forms over spaces of orderings and the Witt Ring

Fix a space of orderings (X,G). A form over a space of orderings (X,G) is a
formal n−tuple f = (a1, . . . , an) with entries in G. The number n is called the
dimension of the form f , the product a1 · . . . · an ∈ G is called the determinant
pf f and denoted by det f . For each x ∈ X the signature of f at x is sgnxf =∑n

i=1 ai(x) ∈ Z.
We can also define the value set D(f) of a form f = (a1, . . . , an), often written

as D(a1, . . . , an). We proceed by induction - if f = (a), then:

D(f) = a,

if f = (a, b) then, not surprisingly:

D(f) = D(a, b) = {c ∈ G :
∧

x∈X

c(x) = a(x) ∨ c(x) = b(x)},

and, finally, if f = (a1, . . . , an), then:

D(f) =
⋃

b∈D(a2,...,an)

D(a1, b).

We say b is represented by a form f if b ∈ D(f).
We use standard notation from quadratic form theory. If f = (a1, . . . , an) and

g = (b1, . . . , bm) then we define the direct orthogonal sum:

f ⊥ g = (a1, . . . , an, b1, . . . , bm)

and the tensor product:

f ⊗ g = (a1b1, . . . , a1bm, . . . , anb1, . . . , anbm).

We shall also write cf to denote the form (ca1, . . . , can), c ∈ G, and k×f instead of
f ⊥ . . . ⊥ f︸ ︷︷ ︸

k

, k ∈ N. As was the case in the classical theory, the forms of the shape:

(1, a1)⊗ . . .⊗ (1, an)

are called Pfister forms and denoted by ((a1, . . . , an)).
Now we shall study some basic properities of value sets of quadratic forms over

spaces of orderings. First of all, observe that our inductive definition makes D(f)
independent on the order of the entries of f . Indeed, let f = (a1, . . . , an). The
result is clear if n = 1 or n = 2, so suppose that n ≥ 3. It suffices to show
that the value set does not change if we permute two adjacent elements ai and
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aj . If i, j ≥ 2, then the statement is clear by induction. If i = 1 and j = 2,
suppose that b ∈ D(a2, a1, a3, . . . , an). Thus b ∈ D(a2, c) and c ∈ D(a1, d), d ∈
D(a3, . . . , an). By the associativity axiom (3) b ∈ D(a1, e) for some e ∈ D(a2, d),
so b ∈ D(a1, a2, . . . , an).

Clearly, D(cf) = cD(f) for any c ∈ G, since c2 = 1. Next, observe that:

c ∈ D(f ⊥ g) ⇔
∨

a∈D(f)

∨
b∈D(g)

c ∈ D(a, b).

Indeed, assume that f = (a1, . . . , ak), g = (ak+1, . . . , an). First, we shall prove the
implication (⇒). If k = 1, then c ∈ D(a1, b), b ∈ D(a2, . . . , an), so we can take
a = a1. If k ≥ 2 then c ∈ D(a1, d), d ∈ D(f ′ ⊥ g), where g′ = (a2, . . . , ak). By
induction d ∈ D(e, p), e ∈ D(f ′), p ∈ D(r) and hence by the associativity axiom
(3) c ∈ D(r, p) for some r ∈ D(a1, e). Thus r ∈ D(f), so we can take a = r, b = p.

To prove (⇐), assume that k = 1. Then, since a ∈ D(a1) and thus a = a1, we
have c ∈ D(a1, b). If k ≥ 2 then a ∈ D(a1, d), d ∈ D(f ′), where f ′ = (a2, . . . , an).
Again, by the associativity axiom (3), c ∈ D(a1, e) where e ∈ D(d, b). By induction
on k, e ∈ D(f ′ ⊥ g). This proves c ∈ D(f ⊥ g).

Moreover, using induction we can show that:

c ∈ D(f1 ⊥ . . . ⊥ fk) ⇔
∨

ai∈D(fi)

c ∈ D(a1, . . . , ak).

Next, we say that a set M ⊂ G is additively closed if for any a, b ∈ M we
have D(a, b) ⊂ M . Observe, that D(f) is the smallest additively closed set con-
taining the entries of f . Indeed, say f = (a1, . . . , an). Using D(a1, . . . , an) =⋃

b∈D(a2,...,an)D(a1,b) and induction on n we see that any additively closed set
containing a1, . . . , an must contain D(f). It remains to check, that D(f) is it-
self additively closed. Let a, b ∈ D(f) and let c ∈ D(a, b). Then c ∈ D(f ⊥
f) = D((a1, a1) ⊥ . . . ⊥ (an, an)), so c ∈ D(d1, . . . , dn) for some di ∈ D(ai, ai),
i ∈ {1, . . . , n}. Thus di(x) = ai(x) for all x ∈ X, so di = ai, do c ∈ D(f).

As an immediate consequence we get that also:

D(k × f) = D(f).

Now we shall introduce the notion of the isometry of quadratic forms over
spaces of orderings. We also proceed by induction; if f = (a) and g = (b), then

f ∼= g ⇔ a = b,

if f = (a1, a2) and g = (b1, b2) then:

f ∼= g ⇔
∧

x∈X

sgnxf = a1(x) + a2(x) = b1(x) + b2(x) = sgnxg,

finally, if f = (a1, . . . , an), g = (b1, . . . , bn) then:

f ∼= g ⇔ ∨
a,b,c3,...,cn∈G

(a2, . . . , an) ∼= (a, c3, . . . , cn) ∧ (a1, a) ∼= (b1, b)∧
∧(b2, . . . , bn) ∼= (b, c3, . . . , cn) .

This definition allows us to give an alternative description of the set of values
of f , analogous to the representation theorem in the classical sense. Namely, if
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f = (a1, . . . , an):
b1 ∈ D(f) ⇔

∨
b2,...,bn

f ∼= (b1, . . . , bn)

We proceed by induction on n. If n = 1, the result is clear, if n = 2 it suffices
to compare signatures: if (a1, a2) ∼= (b1, b2) then b1 ∈ D(a1, a2) and a1a2 = b1b2,
so b2 = a1a2b1. Conversely, if b1 ∈ D(a1, a2) then (a1, a2) ∼= (b1, b2) where b2 =
a1a2b1. Suppose that n ≥ 3. If (a1, . . . , an) ∼= (b1, . . . , bn) then we may pick
a, b, c3, . . . , cn such that:

(a2, . . . , an) ∼= (a, c3, . . . , cn) ∧ (a1, a) ∼= (b1, b) ∧ (b2, . . . , bn) ∼= (b, c3, . . . , cn).

Thus b1 ∈ D(a1, a) and, by inductive hypothesis, a ∈ D(a2, . . . , an), so b1 ∈
D(a1, . . . , an). Conversely, if b1 ∈ D(a1, . . . , an) then b1 ∈ D(a1, a) for some
a ∈ D(a2, . . . , an). Thus (a1, a) ∼= (b1, b) where b = a1ab1 and, by induction,
(a2, . . . , an) ∼= (a, c3, . . . , cn) for some c3, . . . , cn. Thus (a1, . . . , an) ∼= (b1, . . . , bn)
where b2 = b, bi = ci, i ∈ {3, . . . , n}.

Next, observe that if bi = aπ(i) for some permutation π of {1, . . . , n} then:

(a1, . . . , an) ∼= (b1, . . . , bn).

In order to prove that we may assume n ≥ 3. If π(1) = i ≥ 2, take a = ai,
b = a1 and c3, . . . , cn to be the elements left after a1 and ai are deleted from the
list a1, . . . , an. Since a, c3, . . . , cn is a permutation of a2, . . . , an, b, c3, . . . , cn is a
permutation of b2, . . . , bn and b1, b is a permutation of a1, a, the result follows by
induction. If π(1) = 1 take a = b = a2 and ci = ai.

Observe that if f ∼= g, then dim f = dim g. It is easy to prove by induction
that also det f = det g, sgnxf = sgnxg for all x ∈ X, D(f) = D(g) and cf ∼= cg
for all c ∈ G. As was the case with ”normal” quadratic forms, the relation ∼= is
an equivalence relation; indeed, it is clearly symmetric and reflexive, so we have to
show that it is transitive. We shall state this as a separate result.

Lemma 8. The relation ∼= is transitive.

Proof. Let f , g and h be such n-dimensional forms over (X,G) that f ∼= g and
g ∼= h. Using induction we shall show that f ∼= h. If n = 1 or n = 2, the result is
clear. Let n = 3, f = (a1, a2, a3), h = (b1, b2, b3). Since D(f) = D(g) = D(h) we
have that b1 ∈ D(f), so b1 ∈ D(a1, a) for some a ∈ D(a2, a3). Thus (a1, a) ∼= (b1, b)
and (a2, a3) ∼= (a, c3) for some b, c3 ∈ G. Thus:

(b1, b2, b3) = h ∼= g ∼= f = (a1, a2, a3) ∼= (b1, b, c3).

Comparing signatures gives b2(x) + b3(x) = b(x) + c3(x) for all x ∈ X, so (b2, b3) ∼=
(b, c3).

Let n ≥ 4. Pick elements a, b, c ∈ G and (n− 1)−dimensional forms f ′, g′, h′ so
that

f = (a) ⊥ f ′ , g = (b) ⊥ g′ and h = (c) ⊥ h′.

Since f ∼= g and g ∼= h, there exist a′, b′, b′′, c′ ∈ G and (n− 2)−dimensional forms
α, β such that:

f ′ ∼= (a′) ⊥ α, g′ ∼= (b′) ⊥ α, g′ ∼= (b′′) ⊥ β, h′ ∼= (c′) ⊥ β, (a, a′) ∼= (b, b′).

and (b, b′′) ∼= (c, c′). By induction (b′) ⊥ α ∼= (b′′) ⊥ β, so there exist b1, b2 ∈ G
and an (n− 3)−dimensional form γ such that:

α ∼= (b1) ⊥ γ, β ∼= (b2) ⊥ γ, (b′, b1) ∼= (b′′, b2).
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Hence:
(a, a′, b1) ∼= (b, b′, b1) ∼= (b, b′′, b2) ∼= (c, c′, b2)

so there exist a1, c1, d ∈ G satisfying:

(a′, b1) ∼= (a1, d), (c′, b2) ∼= (c1, d), (a, a1) ∼= (c, c1).

Let δ = (d) ⊥ γ. Then:

f ′ = (a′) ⊥ α ∼= (a′, b1) ⊥ γ ∼= (a1, d) ⊥ γ ∼= (a1) ⊥ δ

and
h′ = (c′) ⊥ β ∼= (c′, b2) ⊥ γ ∼= (c1, d) ⊥ γ ∼= (c1) ⊥ δ.

By induction f ′ ∼= (a1) ⊥ δ and h′ ∼= (c1) ⊥ δ. Since (a, a1) ∼= (c, c1) this proves
f ∼= h. �

Now observe that - as in the classical case - for any forms f, f ′, g, g′ f ∼= f ′ and
g ∼= g′ implies:

f ⊥ g ∼= f ′ ⊥ g′ and f ⊗ g ∼= f ′ ⊗ g′.

Indeed, since isometry of forms is independent on order of entries of form, f ⊥
g ∼= g ⊥ f and f ⊗ g ∼= g ⊗ f , so we may assume that f = f ′. If g ∼= g′ then
cg ∼= cg′, so it suffices to show the result for ⊥. By induction on dimension of f we
are reduced to the case when dim(f) = 1, say f = (a1). Let a, c3, . . . , cn be such
that g = (a, c3, . . . , cn) and let b = a. Then

g ∼= (a, c3, . . . , cn), g′ ∼= (b, c3, . . . , cn), (a1, a) ∼= (a1, b)

so (a1) ⊥ g ∼= (a1) ⊥ g′ by definition of ∼=.
We can also state the following result, being an analogon to the Witt cancellation

theorem: for any forms f, f ′, g, g′ f ∼= f ′ and f ⊥ g ∼= f ′ ⊥ g′ implies g ∼= g′.
Indeed, using independence on permutations and induction on the dimension of f
we can reduce to the case f = f ′ and dim f = 1, say f = (a1). Let a, b, c3, . . . , cn
be such that

g ∼= (a, c3, . . . , cn), g′ ∼= (b, c3, . . . , cn), (a1, a) ∼= (a1, b).

Comparing determinants yields a = b, so g ∼= (a, c3, . . . , cn) = (b, c3, . . . , cn) ∼= g′,
so that g ∼= g′.

Now we are in a good point to define the Witt ring of quadratic forms over a
space of orderings. A form (a,−a), a ∈ G, is called a hyperbolic plane. Note
that (a,−a) ∼= (1,−1) for any a ∈ G. A form h is called a hyperbolic form if:

h = (1,−1) ⊥ . . . ⊥ (1,−1)︸ ︷︷ ︸
k

and we say that two forms f and g are similar, denoted f ∼ g, if there exist
hyperbolic forms h1 and h2 such that:

f ⊥ h1
∼= g ⊥ h2.

This is easily seen to be an equivalence relation. On the setW (X,G) of all similarity
classes we define addition:

< f > + < g >=< f ⊥ g >

and multiplication:
< f > · < g >=< f ⊗ g >
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and therefore we make W (X,G) into a commutative ring with identity, which will
be called the Witt ring of a space of orderings.

At the end of this section we shall introduce the notion of isotropy. A form f
will be called isotropic if there is a form g such that f ∼= (1,−1) ⊥ g. Otherwise
f will be called anisotropic. As we remember, in the ”classical” theory there was
a useful relationship between isometry and similarity - in the case of the Witt ring
of a space of orderings we have the following criterion:

f ∼= g ⇔ f ∼ g ∧ dim f = dim g.

Implication (⇒) is clear and to prove the converse suppose that f ⊥ k × (1,−1) ∼=
g ⊥ k × (1,−1). Comparing dimensions and using dim f = dim g we get k = l, so
f ∼= g by the Witt cancellation theorem.

Next, observe that:

f is isotropic ⇔
∨
g

f ∼ g ∧ dim f > dim g.

Implication (⇒) is clear and to prove the converse suppose that f ⊥ k × (1,−1) ∼=
g ⊥ k × (1,−1). Comparing dimensions and using dim f > dim g we get k < l, so
f ∼= g ⊥ (l − k)× (1,−1) by the Witt cancellation theorem.

Another useful characterization of isotropy is as follows:

f is isotropic ⇔ D(f) = G⇔ D(f) ∩ −D(f) 6= ∅.
We shall prove that f is isotropic ⇒ D(f) = G; suppose that f ∼= (1,−1) ⊥ g.
Since (1,−1) ∼= (a,−a), this yields f ∼= (a,−a) ⊥ g, so a ∈ D(f) and therefore
D(f) = g. The implication D(f) = G ⇔ D(f) ∩ −D(f) 6= ∅ is clear, so let us
prove D(f) ∩ −D(f) 6= ∅ ⇒ f is isotropic. Say f ∼= (a1, . . . , an) and −a1 ∈ D(f).
Since D(a1) = {a1} and −a1 6= a1, n ≥ 2. Next, since −a1 ∈ D(f), −a1 ∈ D(a1, a)
for some a ∈ D(a2, . . . , an). Comparing signatures we get that −a1 = a and hence
−a1 ∈ D(a2, . . . , an). Thus (a2, . . . , an) ∼= (−a1, c3, . . . , cn) for some c3, . . . , cn ∈ G.
Therefore:

f ∼= (a1, . . . , an) ∼= (a1,−a1, c3, . . . , cn) ∼= (1,−1, c3, . . . , cn)

and f is isotropic.
As an immediate corollary we see that if f is anisotropic then so is n× f for any

n ≥ 1 (since D(f) = D(nf)).
Observe that if f ⊥ g is isotropic then there exists b ∈ D(f) such that −b ∈ D(g).

Indeed, say f = (a) ⊥ f ′ and suppose that f ⊥ g ∼= (1,−1) ⊥ h ∼= (a,−a) ⊥ h. By
the Witt cancellation theorem f ′ ⊥ g ∼= (−a) ⊥ h, that is −a ∈ D(f ′ ⊥ g). If g
is one-dimensional then f ′ ⊥ g = g and we take b = a. Otherwise we may choose
c ∈ D(f ′) and d ∈ D(g) such that −a ∈ D(c, d). Then (c, d) ⊥ (−a,−acd), that is
(a, c) ∼= (−d,−acd), so that −d ∈ D(a, c) ⊂ D(f) and we can take b = −d.

20. Pfister’s local-global principle for spaces of orderings

The following is an abstract version of Pfister’s local-global principle for qua-
dratic forms over spaces of orderings:

Theorem 25. For any forms f, g:

f ∼ g ⇔
∧

x∈X

sgnxf = sgnxg



THE ALGEBRAIC THEORY OF QUADRATIC FORMS - AN INTRODUCTION 47

Proof. (⇒) If f ∼ g then for some hyperbolic forms h1, h2 f ⊥ h1 ≡ g ⊥ h2. Since
signatures of hyperbolic forms are equal to zero it follows that sgnxf = sgnxg for
all x ∈ X.

(⇐) By considering the form f ⊥ −g it suffices to show that if sgnxf = 0 for all
x ∈ X then f ∼ 0. Suppose that f � 0. Since for every isotropic form f there exists
a form g such that ∼ g and dim f > dim g, we may assume that f is anisotropic. If
f is anisotropic then so is n× f for any n ≥ 1, so we may assume that 2n × f � 0
for all n ≥ 0. By the Zorn’s lemma we may choose a multiplicative set S in the
Witt ring W (X,G) with 2 ∈ S maximal subject to the condition that g⊗ f � 0 for
all < g >∈ S.

We shall show that: ∧
a∈G

< 1, a >∈ S∨ < 1,−a >∈ S

but both possibilities cannot occur. Suppose that < 1, a >/∈ S. Since (1, a) ⊗
(1, a) ∼ 2 × (1ma) and 2 ∈ S, the multiplicative set generated by S and < 1, a >
is S∪ < 1, a > ⊗S. By the maximality of S, (1, a) ⊗ g1 ⊗ f ∼ 0 for some g1 ∈ S.
Similarly, if < 1,−a >/∈ S then < 1,−a > ⊗g2 ⊗ f ∼ 0 for some g2 ∈ S. Since
2 ∼ (1, 1) ∼ (1, a) ⊥ (1,−a), this implies:

2× g1 ⊗ g2 ⊗ f ∼ g1 ⊗ g2 ⊗ f ⊥ g1 ⊗ g2 ⊗ f

∼ (1, 1)⊗ g1 ⊗ g2 ⊗ f

∼ [(1, a) ⊥ (1,−a)]⊗ g1 ⊗ g2 ⊗ f

∼ (1, a)⊗ g1 ⊗ g2 ⊗ f ⊥ (1,−a)⊗ g1 ⊗ g2 ⊗ f

∼ 0

so that 2× g× f ∼ 0 where g = g1 ⊗ g2. Since 2× g ∈ S, this is a contradiction. If
both < 1, a > and < 1,−a > are in S, then (1, a)⊗(1,−a) ∼ 0 ∈ S, a contradiction.

Therefore we have a well-defined function x : G→ {−1, 1} given by:

x(a) =
{

1 if < 1, a >∈ S
−1 if < 1,−a >∈ S

Note that < 1, a >∈ S ⇔< 1,−a >/∈ S ⇔ (1,−a) ⊗ g ⊗ f ∼ 0 that means
ar ⊗ f ∼ g ⊗ f for some < g >∈ S. It follows easily that x is a character on G.

Now we shall show that x ∈ X. Suppose that a, b ∈ kerx, c ∈ D(a, b) and c /∈
kerx. Then (a, b) ∼= (c, cab). Also ag⊗f ∼ g⊗f , bg⊗f ∼ g⊗f and cg⊗f ∼ −g⊗f
for some g ∈ S. Then (a, b) ⊗ g ⊗ f ∼ 2 × g ⊗ f , (c, cab) ⊗ g ⊗ f ∼ −2 ⊗ g ⊗ f so
4 × g ⊗ f ∼ 0 contradicting 4× < g >∈ S. Thus a, b ∈ kerx, c ∈ D(a, b) implies
that c ∈ kerx, so by the second axiom x ∈ X.

To complete the proof we need to show that sgnxf 6= 0. Let f = (a1, . . . , an)
and suppose that ei = ai(x) so that sgnxf =

∑n
i=1 ai(x) =

∑n
i=1 ei. By the

definition of x, < 1, a(x)a >∈ S holds for any a ∈ G, hence < 1, eiai >∈ S, so
f ⊗

∏n
i=1(1, eiai) � 0. On the other hand ai(1, eiai) ∼= ei(1, eiai) so:

f ⊗
n∏

i=1

(1, eiai) = (a1, . . . , an)⊗
n∏

i=1

(1, eiai) ∼= (e1, . . . , en)⊗
n∏

i=1

(1, eiai).

It follows that (e1, . . . , en) � 0 and since each ei is 1 or -1 this means
∑n

i=1 ei 6=
0. �
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As an immediate consequence of the above theorem we have the following fact:

f ∼= g ⇔ dim f = dim g ∧
∧

x∈X

sgnxf = sgnxg.

This is clear for dimensions 1 and 2. Also for dimension ≥ 3 the implication
(⇒) is easily checked by induction. In order to prove the converse suppose that
dim f = dim g and for all x ∈ X we have sgnxf = sgnxg. This implies f ∼ g which
- since the dimensions of f and g are equal - means that f ∼= g.

The above characterization agrees with the intuition for ”normal” quadratic
forms over reals. It also allows us to give an alternate definition of a space of
orderings. Namely, a space of orderings is said to be a pair (X,G) satisfying the
following axioms:

(1) X 6= ∅, G < {−1, 1}X , const.− 1 ∈ X and∧
x,y∈X

x 6= y ⇒ (
∨

a∈G

a(x) = a(y)).

(2) The image of the natural embedding of X into χ(G):

x 7→ (G 3 a 7→ a(x) ∈ {−1, 1})
is closed in χ(G).

(3) For any forms f and g with entries in G:∧
c∈D(f⊥g)

∨
a∈D(f)

∨
b∈D(g)

c ∈ D(a, b).

The proof of equivalence of those two definitions of a space of orderings is given in
details in [5] on page 27.

21. Subspaces and preorderings

Assume that (X,G) is a space of orderings. Recall that for any a ∈ G the set:

U(a) = {x ∈ X : a(x) = 1}
is clopen. Such sets form a subbasis for topology on X and the sets:

U(a1, . . . , an) =
n⋂

i=1

U(ai)

are a basis for the topology. A subset Y ⊂ X is called a subspace of X if Y is
expressible as

Y =
⋂
a∈S

U(a)

for some, not necessarily finite, subset S ( G. The subspace generated by
a subset Y in X is just the smallest subspace of (X,G) containing Y . For any
subspace Y of X let G|Y denote the group of all restrictions a|Y , a ∈ G, and for
any form f = (a1, . . . , an) with entries inG let f |Y denote the form (a1|Y , . . . , an|Y ).
Speaking of a subspace Y of (X,G) we shall refer to the pair (Y,G|Y ).

Let K be a formally real field and consider the full space of orderings

(X∑
K2 , G∑

K2).

Subspaces of such space have the form (XT , GT ) where T is a preordering in K.
Indeed, let Y ⊂ X∑

K2 be a subspace, say Y =
⋂

a∈S U(a). Then Y = XT

where T is the preordering in K generated by the elements a, a ∈ S, and G|Y =
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GT . Conversely, it T is a preordering of K, then XT =
⋂

a∈T\{0} U(a). Such
correspondence is one-to-one and inclusion-reversing: if T and T ′ are preorderings
in K then XT ′ is a subspace of XT iff T ′ ⊃ T .

We shall try to establish a similar result for abstract spaces of orderings. A
preordering in G is a subgroup T of G which is additively closed in the following
sense: ∧

a,b∈T

D(a, b) ⊂ T.

Theorem 26. (1) Let Y = U(c1, . . . , ck). Denote g = (1, c1) ⊗ . . . ⊗ (1, ck).
Then the preordering generated by {c1, . . . , ck} is:

D(g) = {b ∈ G : bg ∼= g} = {b ∈ G : b = 1 on Y }.

(2) Let Y =
⋂

a∈S U(a) for any set S ⊂ G. Then the preordering generated by
S is:

{b ∈ G : b = 1 on Y }.

Proof. Let T denote the preordering generated by c1, . . . , ck. Clearly g is the sum
of the 1-dimensional forms (ci1 · . . . ·cis

), 1 ≤ i1 < . . . < is ≤ k, 0 ≤ s ≤ k, so - since
D(g) is the smallest additively closed set containing the entries of g - D(g) is the
smallest additively closed set containing the products ci1 · . . . · cis . These products
are obviously in T , so D(g) ⊂ T . The set:

{b ∈ G : b = 1 on Y }

is a preordering containing c1, . . . , ck, so T ⊂ {b ∈ G : b = 1 on Y }. Now fix an
element b ∈ G such that b = 1 on Y . Comparing signatures and dimensions and
using the alternative definition of isometry we see that g ∼= bg (the signature of
each side at x is 2n if x ∈ Y and 0 otherwise). Finally, since 1 ∈ D(g), g ∼= bg
implies b ∈ D(g).

In order to prove (2) - again, one inclusion is clear. For the other suppose b = 1
on Y . Since b is continuous and X is compact, this implies that b = 1 on some
set U(c1, . . . , ck), {c1, . . . , ck} ⊂ S. Thus b lies in the preordering generated by
{c1, . . . , ck}. �

As an immediate corollary we see that there is a natural one-to-one inclusion-
reversing correspondence between subspaces of X and preorderings in G. Indeed,
if Y is any subspace, then T = {b ∈ G : b = 1 on Y } is a preordering. If T ⊂ G is
any preordering, then Y =

⋃
c∈T U(c) is a subspace and T = {b ∈ G : b = 1 on Y }.

Now we want to prove that every subspace of a space of orderings is actually a
space of orderings. In order to do that we need the following lemma:

Lemma 9. (1) Let Y = U(c1, . . . , ck). Denote g = (1, c1) ⊗ . . . ⊗ (1, ck). Let
f = (a1, . . . , an) and let f |Y = (a1|Y , . . . , an|Y ). Then:

b|Y ∈ D(f |Y ) ⇔ b ∈ D(f ⊗ g)
⇔ b ∈ D(a1s1, . . . , ansn) for some s1, . . . , sn ∈ D(g)

(2) Let Y =
⋂

a∈S U(a) for any set S ⊂ G. Let f = (a1, . . . , an) and let
f |Y = (a1|Y , . . . , an|Y ). Then:

b|Y ∈ D(f |Y ) ⇔ b ∈ D(a1s1, . . . , ansn) for some s1, . . . , sn ∈ G s.t. si = 1 on Y.
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Proof. We shall use the alternate definition of value sets and isometry. Suppose
b|Y ∈ D(f |Y ) so f ∼= (b1, . . . , bn) on Y for some b1, . . . , bn ∈ G with b1 = b.
Comparing signatures f ⊗ g ∼= (b1, . . . , bn) ⊗ g on X. Since 1 ∈ D(g) this proves
b = b1 ∈ D(f ⊗ g). In turn, using f ⊗ g ∼= a1g ⊥ . . . ⊥ ang and the third alternate
axiom, b ∈ f ⊗ g implies that b ∈ D(a1s1, . . . , ansn) for some s1, . . . , sn ∈ D(g). In
turn, since si = 1 on Y , this implies bY ∈ D(f |Y ).

In (2) the implication (⇐) is clear. To prove (⇒) assume that b|Y ∈ D(f |Y ),
that is (a1, . . . , an) ∼= (b1, . . . , bn) on Y for some b1, . . . , bn ∈ G with b1 = b. Y is
the intersection of the sets U(c1, . . . , ck), c1, . . . , ck ∈ S and the function:

x 7→
n∑

i=1

ai(x)−
n∑

i=1

bi(x)

is continuous. By compactness of X (a1, . . . , an) ∼= (b1, . . . , bn) on U(c1, . . . , ck) for
some c1, . . . , ck ∈ S. By the previous part of the theorem b ∈ D(a1s1, . . . , ansn)
where si ∈ D((1, c1) ⊥ . . . ⊥ (1, ck)). Since Y ⊂ U(c1, . . . , ck) and si = 1 on
U(c1, . . . , ck) we see that si = 1 on Y . �

Now we are able to finish our proof. We proceed with checking the alternate
axioms of a space of orderings. (1) and (2) are clear, so let us consider (3). Suppose
a|Y ∈ D(f |Y ⊥ g|Y ), f = (b1, . . . , bk), g = (c1, . . . , cl). By the previous lemma a ∈
D(b1s1, . . . , bksk, c1t1, . . . , cltl) with si = tj = 1 on Y . By the third alternate axiom
for (X,G) we have b ∈ D(b1s1, . . . , bksk), c ∈ D(c1t1, . . . , cltl) with a ∈ D(b, c.
Then a|Y ∈ D(b|Y , c|Y ), b|Y ∈ D(f |Y ), c|Y ∈ D(g|Y ).

22. Fans

Let G be a multiplicative group with exponent 2. Fix an element e ∈ G, e 6= 1
(to play the role of the constant function -1) and set

X = {x ∈ χ(G) : x(e) = −1}.

Elements of G may be viewed as functions on X by defining

a(x) = x(a) for all a ∈ G, x ∈ X.

The pair (X,G) constructed this way is called a fan. Not surprisingly we shall
prove the following theorem:

Theorem 27. Any fan (X,G) is a space of orderings.

Proof. We shall use the standard axioms of a space of orderings. First, observe that
if H is any subgroup of G maximal subject to the condition e /∈ H, then H = kerx
for some x ∈ X. Indeed, suppose that b /∈ H. Then H ∪ bH is a subgroup of G
containing H, so e ∈ H ∪ bH. Since e /∈ H, this means that e ∈ bH, or b ∈ eH.
Thus H ∪ eH = G, so we have a character x : G→ {−1, 1} with kerx = H. Then
e /∈ kerx, so x(e) = −1, that is x ∈ X.

We can identify G with a subgroup of {−1, 1}X by viewing a ∈ G as the function
a : X → {−1, 1} given by:

a(x) = x(1).

This is correct: if a 6= b then ab 6= 1, so e /∈ {1, eab}. Hence, by the Zorn’s lemma, we
get a subgroup H of G with {1, eab} ⊂ H maximal subject to the condition e /∈ H.
By the previuos observation, H = kerx for some x ∈ X and hence x(eab) = 1, that
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is x(a) = −x(b) or a(x) = −b(x) and therefore a and b define distinct functions on
X.

Now the axiom (1) is clearly satisfied and so is (2). Before we prove (3) observe,
that if a, b ∈ G, ab 6= −1, then D(a, b) = {a, b}. Indeed, suppose c /∈ {a, b}.
Then −1 /∈ {1, ab,−ac,−bc} so, by the Zorn’s lemma, we have a subgroup H of
G with {1, ab,−ac,−bc} ⊂ H maximal to the condition −1 /∈ H. By the previous
observation we have x ∈ X with kerx = H. Thus (ab)(x) = 1, that is a(x) = b(x)
and (−ac)(x) = 1, that is c(x) = −a(x) 6= a(x). Thus a(x) + b(x) 6= c(x) +
a(x)b(x)c(x), so (a, b) � (c, abc) which means that c /∈ D(a, b).

To finish the proof suppose b ∈ D(a1, c) for some c ∈ D(a2, a3). We want to
show b ∈ D(d, a3) for some d ∈ D(a1, a2). If a1a2 6= −1, a1a3 6= −1 and a2a3 6= −1,
then by the above note c = a2 or a3 and b = a1, a2 or a3. Thus we can take d = a1

or a2 in this case. If a1a2 = −1, then D(a1, a2) = G so we can take d = b. If
a1a3 = −1 or a2a3 = −1 then D(a1, a3) = G or D(a2, a3) = G, so we can take
d = a1 or d = a2. �

The motivation for considering fans comes from the following example. Let K
be a field. Recall that a subring B ⊂ K is called the valuation ring if for any unit
a ∈ U(K) we have a ∈ B or a−1 ∈ B. It is easily checked that valuation rings are
local rings with the only maximal ideal:

M = {a ∈ U(K) : a−1 /∈ B} ∪ {0}
and the group of units:

U = {a ∈ U(K) : a, a−1 ∈ B} = B \M.

The field K = B/M is called the residue field. A ring homomorphism α : B → K ′,
where K ′ is any field, is called a place, when kerα = M. We can extend any place
α to a function α : K → K ′ ∪ {∞} by setting α(a) = ∞ if a ∈ K \ B. A place is
called real valued if K ′ = R. Next, the set:

U+
α = {a ∈ K : α(a) 6= ∞, α(a) > 0}

happens to be a subgroup of U(K). It can be checked that −1 /∈ U(K)2U+
α and

that K2U+
α = U(K)2U+

α ∪ {0} is a preordering. Furthermore, if P ∗ is a subgroup
of U(K) such that U(K)2U+

α ⊂ P ∗ and [U(K) : P ∗] = 2 and −1 /∈ P ∗ then
P = P ∗ ∪{0} is an ordering. It can be shown that every ordering on K is obtained
by this process starting with some real place α. Proofs of all the facts mentioned
above can be found in [2].

Now (XK2U+
α
, GK2U+

α
) is a fan. The proof is clear from the above remarks. Some

authors (e.g. T. Y. Lam in [4], see page 39) give another definition of fan: a fan is
a preordering T of a formally real field K such that for any set P ∗ ⊃ T such that
−1 /∈ P ∗ and [U(K) : P ∗] = 2 the set P = P ∗ ∪ {0} is an ordering. We see that
those two definitions are somehow ”isomorphic”.

Fans can be characterized in variuos ways:

Theorem 28. Let (X,G) be a space of orderings. The following are equivalent:
(1) (X,G) is a fan.
(2) D(1, a) = {1, a} for all a ∈ G \ {−1}.
(3) For all a1, . . . , an ∈ G if aiaj 6= −1 for i 6= j, then D(a1, . . . , an) =

{a1, . . . , an}.
(4) If x ∈ χ(G) satisfies x(−1) = −1 then x ∈ X.
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Proof. (1) ⇒ (2) follows from the proof of the previous theorem, (2) ⇒ (3) can
be proved by induction; D(a) = {a} is true in general. Also D(a, b) = aD(1, ab),
so if (2) holds then D(a, b) = a{1, ab} = {a, b} if ab 6= −1. Now suppose that
b ∈ D(a1, . . . , an) for n ≥ 3 and aiaj 6= −1 for i 6= j. Thus b ∈ D(a1, c) for some
c ∈ D(a2, . . . , an). By induction c = aj for some j ≥ 2. Thus b ∈ D(a1, aj), so
b = a1 or b = aj - anyway, b ∈ {a1, . . . , an}.

To prove (3) ⇒ (4) it suffices to show that if a, b ∈ kerx then D(a, b) ⊂ kerx, so
that x ∈ X by the axiom (2). Since −1 /∈ kerx, ab 6= −1, so, by our assumption,
D(a, b) = {a, b}. The implication (4) ⇒ (1) is obvious. �

We also need to know when a finite space of orderings is a fan. Suppose that
(X,G) is a space of ordering with X finite (so G is also finite). Viewing elements
of X as characters we have: ⋂

x∈X

kerx = {1}

so we can find some smallest subset {x1, . . . , xn} of X with
n⋂

i=1

kerxi = {1}.

Any such subset will be called a minimal generating set for X.

Theorem 29. Let (X,G) be a space of orderings with a minimal generating set
{x1, . . . , xn}. Then:

(1) |G| = 2n

(2) {x1, . . . , xn} is a basis over a field F2 for the character group χ(G). In
particular each x ∈ X is expressible uniquely as

x =
n∏

i=1

xei
i , ei ∈ {0, 1}.

(3) A necessary condition for a character x =
∏n

i=1 x
ei
i , ei ∈ {0, 1}, to be in X

is that
n∑

i=1

ei ≡ 1mod2.

In particular, n ≥ |X| ≥ 2n−1.
(4) (X,G) is a fan iff |X| = 2n−1.

Proof. Let {x1, . . . , xn} be a minimal generating set for (X,G), so that
n⋂

i=1

kerxi = {1}.

Consider the chain of subgroups:

G ⊂ kerx1 ⊃ kerx1 ∩ kerx2 ⊃ . . . ⊃
n⋂

i=1

kerxi = {1}.

For j ∈ {1, . . . , n} kerxj has index 2 in G and
⋂j−1

i=1 kerxi * kerxj by the minimal
choice of the subset {x1, . . . , xn}. Thus (

⋂j−1
i=1 kerxi) · kerxj = G and⋂j−1

i=1 kerxi⋂j
i=1 kerxi

∼=
(
⋂j−1

i=1 kerxi) · kerxj

kerxj
=

G

kerxj
.
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This means
⋂j

i=1 kerxi has index 2 in
⋂j−1

i=1 kerxi, j ∈ {1, . . . , n}, so {1} =⋂n
i=1 kerxi has index 2n in G, that is |G| = 2n and (1) is proved.
By counting we see that the natural injection G ↪→

∏n
i=1G/ kerxi is surjective ,

so we get elements a1, . . . , an in G such that xi(aj) = −1 if i = j and 1 otherwise.
Clearly a1, . . . , an becomes a F2-basis ofG, that is every element a ∈ G is expressible
uniquely as a =

∏n
i=1 a

ei
i , ei ∈ {0, 1}. Also it is clear that x1, . . . , xn is just the

dual basis of χ(G). This proves (2).
Since each x ∈ X must satisfy x(−1) = (−1)(x) = −1, (3) and (4) are also

clear. �

The above argument also shows that if (X,G) has a finite generating set, then
it is finite. If a1, . . . , an is the dual basis of G corresponding to x1, . . . , xn then, in
terms of this basis, −1 = a1 . . . an, which can be easily checked by evaluating each
side at xj , j ∈ {1, . . . , n}.

Observe that if n = 1 or n = 2 then n = 2n−1, so x1, . . . , xn are the only elements
in X. This is not the case when n ≥ 3: for example if n = 3 then |X| = 3 or |X| = 4
- if the second possibility holds, the character x1x2x3 belongs to X.

If (X,G) is any space of orderings then by a fan in (X,G) we mean subspace
Y of X such that the space of orderings (Y,G|Y ) is a fan. In the case of the space
of orderings (X∑

K2 , G∑
K2), K a real field, the fans are (XK2U+

α
, GK2U+

α
), where

α : K → R∪{∞} are the real valued places. Clearly any subspace of a fan is a fan.
Fans containing only 1 or 2 elements are said to be trivial.

23. Representation theorem

Let (X,G) be any space of orderings. The representation theorem describes the
image of the Witt ring W (X,G) in the ring of continuous functions C(X,Z). We
start with the following lemma:

Lemma 10. Let f : X → Z be a continuous function. Then for some integer n ≥ 0
2nf is represented by a form, that is there exists a form φ with entries in G such
that: ∧

x∈X

2nf(x) = sgnxφ.

Proof. Since f is continuous and Z is endowed with a discrete topology, we see that:∧
x∈X

∨
U(a1,...,av)

x ∈ U(a1, . . . , av) ∧ f is constant on U(a1, . . . , av).

Now, since X is compact, there exist elements aij ∈ G, i ∈ {1, . . . , k}, j ∈
{1, . . . , vi} such that:

X =
k⋃

i=1

U(ai1, . . . , aivi
)

and f is constant on each U(ai1, . . . , aivi). Let G < G be a subgroup generated by
−1 and the elements aij . For x ∈ X let:

x = {y ∈ X : a(y) = a(x) for all a ∈ G}

and
X = {x : x ∈ X}.
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If we view elements of X as characters on G, then elements of X are just restrictions
of elements of X to G. Elements of X can be viewed as characters on the finite
group G, so X is finite. If x = y then aij(x) = aij(y) for all i, j, so x, y lie in the
same U(ai1, . . . , aivi), so f(x) = f(y). Thus we get well-defined function f : X → Z
given by:

f(x) = f(x) for all x ∈ X.
G may be viewed as a vector space over the field F2, so we may pick a basis
−1, a1, . . . , an for G. Define:

px =< 1, a1(x)a1 > ⊗ . . .⊗ < 1, an(x)an >

for every x ∈ X. Then

px(y) =
{

2n if y = x
0 if y 6= x

Thus:
sgny

∑
x∈X

f(x)px = 2nf(y) = 2nf(y)

for each y ∈ Y . Since px ∈W (X,G) and f(x) ∈ Z, we may take φ =
∑

x∈X f(x)px.
�

Now we proceed to the main representation theorem:

Theorem 30. Let f : X → Z be a continuous function. Then the following
statements are equivalent:

(1) f is represented by a form, that is there exists a form φ with entries in G
such that: ∧

x∈X

f(x) = sgnxφ.

(2) For all finite fans Y ⊂ X:∑
x∈Y

f(x) ≡ 0mod|Y |.

(3) For all finite fans Y ⊂ X and for all a ∈ G:∑
x∈Y

a(x)f(x) ≡ 0mod|Y |.

Proof. (1) ⇒ (2). Suppose that f is represented by φ = (a1, . . . , an) and that
Y ⊂ X is a finite fan. Then f(y) =

∑n
i=1 ai(y) and so:∑

y∈Y

f(y) =
n∑

i=1

(
∑
y∈Y

ai(y)).

Thus we are reduced to showing that for any a ∈ G we have:∑
y∈Y

a(y) ≡ 0mod|Y |.

If a = ±1 on Y then
∑

y∈Y a(y) = ±|Y |. If a 6= ±1 on Y then Y = U(a|Y ) ∪
U(−a|Y ) and, since Y is a fan, U(a|Y ) and U(−a|Y ) have each half as many elements
as Y , so: ∑

y∈Y

a(y) = |U(a|Y )| − |U(−a|Y )| = 0.
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(2) ⇒ (3) Suppose that for all finite fans Y ⊂ X
∑

x∈Y f(x) ≡ 0mod|Y |. Fix an
element a ∈ G and a fan Y ⊂ X - we want to show that:∑

x∈Y

a(x)f(x) ≡ 0mod|Y |.

If a = ±1 on Y the result is clear. Otherwise, since Y = U(a|Y ) ∪ U(−a|Y ) and
U(a|Y ) is a fan with 1

2 |Y | elements which implies
∑

x∈U(a|Y ) f(x) ≡ mod 1
2 |Y |, we

have: ∑
x∈Y

a(x)f(x) =
∑

x∈U(a|Y )

f(x)−
∑

x∈U(−a|Y )

f(x)

= 2(
∑

x∈U(a|Y )

f(x))− (
∑
x∈Y

f(x)) ≡ 0mod|Y |.

(3) ⇒ (1). Suppose that f is not represented by a form. Let

F = {Y : Y ⊂ X is a subspace, f |Y is not represented by a form }.

Such family is nonempty. For an arbitrary chain C = {Yi : i ∈ I} ⊂ F consider
the set Y =

⋂
i∈I Yi. Y is a subspace and if f |Y is represented by a form, say

(a1|Y , . . . , an|Y ) then, by continuity, the set:

U = {x ∈ X : f(x) =
n∑

i=1

ai(x)}

is open in X and contains Y . Thus by compactness of X it contains Yi, so f |Yi
is

represented by (a1|Yi , . . . , an|Yi). Therefore the Zorn’s lemma applies and we have
the subspace Y with f |Y not represented and Y is minimal with this property.

Now observe, that every fan in Y is also a fan in X, so our assumption that:∑
x∈Z

a(x)f(x) ≡ 0mod|Z|

for all a ∈ G still holds for all finite fans Z ⊂ Y . Thus we may replace X with
Y . So now f is not represented and f |Y is represented for each proper subspace
Y ⊂ X.

We shall show that (X,G) is not a fan. Suppose that the opposite is true. Since
f is continuous and Z is endowed with a discrete topology, we see that:∧

x∈X

∨
U(a1,...,av)

x ∈ U(a1, . . . , av) ∧ f is constant on U(a1, . . . , av).

Now, since X is compact, there exist elements aij ∈ G, i ∈ {1, . . . , k}, j ∈
{1, . . . , vi} such that:

X =
k⋃

i=1

U(ai1, . . . , aivi)

and f is constant on each U(ai1, . . . , aivi). Let G < G be a subgroup generated by
−1 and the elements aij . Pick any subgroup H ⊂ G so that G = G×H, that is G
is the direct product of G and H. Let:

Y = {x ∈ χ(G) : x|H = 1 ∧ x(−1) = −1}.
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Since X is a fan, Y ⊂ X, and clearly Y is a fan. Again, G may be viewed as a
vector space over the field F2, so we may pick a basis −1, a1, . . . , an for G. We see
that |Y | = 2n. As before, define:

x = {y ∈ X : a(y) = a(x) for all a ∈ G}
and

X = {x : x ∈ X}.
If we view elements of X as characters on G, then elements of X are just restrictions
of elements of X to G. Elements of X can be viewed as characters on the finite
group G, so X is finite. If x = y then aij(x) = aij(y) for all i, j, so x, y lie in the
same U(ai1, . . . , aivi

), so f(x) = f(y). Thus we get well-defined function f : X → Z
given by:

f(x) = f(x) for all x ∈ X.
Define:

px =< 1, a1(x)a1 > ⊗ . . .⊗ < 1, an(x)an >

for every x ∈ X. Then

px(y) =
{

2n if y = x
0 if y 6= x

Thus:
sgny

∑
x∈X

f(x)px = 2nf(y) = 2nf(y)

for each y ∈ Y . Since px ∈W (X,G) and f(x) ∈ Z, we see that - as in the previous
lemma - f is represented by the form φ =

∑
x∈X f(x)px. Now for every S running

through subsets of {1, . . . , n} define:

aS =
∏
i∈S

ai.

Thus we may expand px as px =
∑

S aS(x) < aS > and write:

φ =
∑
x∈X

f(x)px =
∑
x∈X

f(x)
∑
S

aS(x) < aS >=
∑
S

mS < aS >

where mS =
∑

x∈X f(x)aS(x). Now:

mS =
∑
x∈X

f(x)aS(x) =
∑
y∈Y

f(y)aS(y) = 0mod2n

for each subset S of {1, . . . , n}. That means, that each of the integers mS is divisible
by 2n, so f is represented by the form:∑

S

mS

2n
< aS >∈W (X,G)

which is a contradiction. So (X,G) must not be a fan.
By one of the cited characterizations of fans, there exists a ∈ G such that a 6= −1

andD(1, a) 6= {1, a}. Thus there exists b ∈ D(1, a), b /∈ {1, a}. Thus (1, a) ∼= (b, ab),
that is (−a, b, ab) ∼ (1). Take a1 = −a, a2 = b and a3 = ab. Observe that ai 6= 1, so
U(ai) is a proper subspace of X. By the minimal choice of X, f |U(ai) is represented.
also (a1, a2, a3) ∼ (1), so - by comparison of signatures - we get:

For each x ∈ X exactly one of a1(x), a2(x), a3(x) is − 1.
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In particular U(ai) ∪ U(aj) = X for i 6= j. Thus we can assume U(ai) 6= ∅
(otherwise U(aj) = X). Let φi be a form with entries in G such that φi|U(ai)

represents f |U(ai). We can assume φ3 ∼ 0, replacing f by f−φ3 if necessary, where
φ3 is viewed as a function sgn·φ3. We can also assume that φi|U(ai) is anisotropic.
Next, by the lemma used in proof that every subspace is a space of orderings, we see
that D(φi|U(ai)) = D(φi⊗ (1, ai))|U(ai) which means that φi⊗ (1, ai) is anisotropic
for i ∈ {1, 2}.

Let x ∈ X. If a1(x) = a2(x) = 1, then sgnxφi = f(x) for i ∈ {1, 2}, so:

sgnxφ1 ⊗ (1, a1) = 2f(x) = sgnxφ2 ⊗ (1, a2).

If a1(x) = 1, a2(x) = −1, then a3(x) = 1, so sgnxφ1 = f(x) = sgnxφ3 = 0 and
sgnx(1, a2) = 0 so:

sgnxφ1 ⊗ (1, a1) = 0 = sgnxφ2 ⊗ (1, a2).

Similarly, if a1(x) = −1, a2(x) = 1 then sgnxφ1 ⊗ (1, a1) = 0 = sgnxφ2 ⊗ (1, a2).
Thus φ1 ⊗ (1, a1) and φ2 ⊗ (1, a2) have the same signatures at all x ∈ X and both
are anisotropic, so:

φ1 ⊗ (1, a1) ∼= φ2 ⊗ (1, a2).

To finish the proof if suffices to show that there exists a form φ such that φ|U(ai)
∼=

φi|U(ai). Let S = D(φ1 ⊗ (1, a1)) = D(φ2 ⊗ (1, a2)). Again using the mentioned
lemma for the proof that every subspace is a space of orderings we get:

S|U(ai) = D(φi ⊗ (1, ai))|U(ai) = D(φi|U(ai))

for i ∈ {1, 2}. Pick p ∈ S and decompose φi
∼= (p) ⊥ φ′i on U(ai), so:

φi ⊗ (1, ai) ∼= (p, pai) ⊥ φ′i ⊗ (1, ai)

on X for i ∈ {1, 2}. Rewriting φ1 ⊗ (1, a1) ∼= φ2 ⊗ (1, a2) using this and cancelling
form (p) we obtain:

(pa1) ⊥ φ′1 ⊗ (1, a1) ∼= (pa2) ⊥ φ′2 ⊗ (1, a2).

Multiplying by a2 and adding (−pa1a2) to both sides yields:

(pa1a2) ⊥ a2φ
′
1 ⊗ (1, a1) ∼= (p) ⊥ φ′2 ⊗ (1, a2)

and
(1,−1) ⊥ a2φ

′
1 ⊗ (1, a1) ∼= p(1,−a1a2) ⊥ φ′2 ⊗ (1, a2).

It follows that the right side of the above equation is isotropic so, using one of the
properties of isotropic direct orthogonal sums, there exists s ∈ D(1,−a1a2) such
that −ps ∈ D(φ′2 ⊗ (1, a2)). Thus −ps|U(a2) ∈ D(φ′2|U(a2)), so φ′2 ∼= (−ps) ⊥ φ′′2 on
U(a2), so:

φ′2 ⊗ (1, a2) ∼= (−ps,−psa2) ⊥ φ′′2 ⊗ (1, a2)

on X. Also, (1,−a1a2) ∼= (s,−sa1a2). Rewriting the previous equation using these
last two relations gives:

(1,−1) ⊥ a2φ
′
1 ⊗ (1, a1) ∼= (ps,−psa1a2,−ps,−psa2) ⊥ φ′′2 ⊗ (1, a2).

Cancelling the hyperbolic planes (1,−1) ∼= (ps,−ps) and multiplying by a2 this
yields:

φ′1 ⊗ (1, a1) ∼= (−psa1,−ps) ⊥ φ′′2 ⊗ (1, a2).
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It follows that −ps ∈ D(φ′1 ⊗ (1, a1)), so φ′1
∼= (−ps) ⊥ φ′′1 on U(a1), that is

φ′1 ⊗ (1, a1) ∼= (−ps,−psa1) ⊥ φ′′1 ⊗ (1, a1) on X. Rewriting the above equality
using this and cancelling we obtain:

φ′′1 ⊗ (1, a1) ∼= φ′′2 ⊗ (1, a2)

on X. Since
φi
∼= (p) ⊥ φ′i

∼= (p,−ps) ⊥ φ′′i

on U(ai), i ∈ {1, 2}, we are done by induction on the dimension. �

The structure of the space of orderings (X,G) is determined by just two things:
the topology on X and the fans in X. The following corollary makes this clear:

Theorem 31. Let f : X → {−1, 1} be any continuous function. Then the following
are equivalent:

(1) f ∈ G.
(2)

∏4
i=1 f(xi) = 1 for all 4-element fans {x1, x2, x3, x4} in X.

(3)
∑4

i=1 f(xi) ≡ 0mod4 for all 4-element fans {x1, x2, x3, x4} in X.

Proof. (1) ⇒ (2) is clear: if f ∈ G then the condition
∏4

i=1 f(xi) = 1 just follows
from the fact that, as characters,

∏4
i=1 xi = 1. (2) ⇔ (3) is obvious since f(xi) =

±1. Therefore we have to prove that (3) ⇒ (1).
Suppose that

∑
Z f(xi) ≡ 0mod4 for all 4-element fans Z in X. We shall show

that f is represented by a form φ = (a1, . . . , an). Suppose that f is not represtented
by a form - then, by the representation theorem, there exists a finite fan V ⊂ X
such that: ∑

x∈V

f(x) ≡/ 0mod|V |.

Take a minimal such V . Clearly V /∈ {1, 2} and, by hypothesis, |V | 6= 4, so
|V | ≥ 8. To simplify notation we replace X by V , so X = V is a fan. Thus, by
the characterization of finite spaces of orderings as fans, |G| = 2n+1. Pick b1 ∈ G,
b1 6= ±1, and let b2 = −b1. By minimality of V :∑

x∈U(bi)

f(x) ≡ 0mod2n−1, i ∈ {1, 2}.

Moreover, since f(x) = ±1:∑
x∈U(bi)

f(x) ∈ {0, 2n−1,−2n−1}, i ∈ {1, 2}.

Note also that, since b2 = −b1:∑
x∈X

f(x) =
∑

x∈U(b1)

f(x) +
∑

x∈U(b2)

f(x).

Thus, for
∑

x∈X f(x) 6= 0mod|V | to hold, one of the above sums must be zero and
the other ±2n−1. Replacing f by −f and interchanging the roles of b1 and b2 if
necessary, we may assume:∑

x∈U(b1)

f(x) = 0 and
∑

x∈U(b2)

f(x) = 2n−1.
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Since
∑

x∈U(b1)
f(x) = 0, there exist x1, x2 ∈ U(b1) such that f(x1) = 1 and

f(x2) = −1. Pick x3 ∈ U(b2). Then x4 = x1x2x3 ∈ U(b2) since:

b2(x4) = b2(x1)b2(x2)b2(x3) = (−1)(−1)(1) = 1.

Next, f(x) = 1 for all x ∈ U(b2), since
∑

x∈U(b2)
f(x) = 2n−1. In particular,

f(xi) = 1 for i ∈ {3, 4}. Thus:
4∑

i=1

f(xi) = 2 6= 0mod4.

But {x1, x2, x3, x4} forms a 4-element fan, which yields a contradiction.
Therefore f is represented by φ = (a1, . . . , an). For fixed x ∈ X let k be the

number of positive entries of φ and l the number of negative entries. Then k+ l = n
and k − l = sgnxφ = ±1. This forces n to be odd, say n = 2m+ 1 and

sgnxφ = 1 ⇔ k = m+ 1 ∧ l = m

and
sgnxφ = −1 ⇔ k = m ∧ l = m+ 1.

It follows that sgnxφ = a(x) where a = (−1)m
∏n

i=1 ai. Applying the Pfister’s
local-global principle we get

φ ∼ (a)
so f can be viewed as an element of G. �

24. Stability index

The stability index of a space of orderings (X,G), denoted stab(X,G), is
defined to be the maximum n such that there exists a fan Y ⊂ X with |Y | = 2n

or ∞ if no such finite n exists. Observe that if x, y ∈ X, x 6= y, then {x, y} is a
fan, so the stability index of (X,G) is greater or equal than 1. Thus stability index
zero just means X is a singleton set. We shall obtain other characterizations of the
stability index, but first we need some terminology and a lemma.

The derived form f ′ of a Pfister form f = (1, a1)⊗ . . .⊗ (1, an) is defined by:

f = (1) ⊥ f ′.

Lemma 11. Let Y = U(a1, . . . , an), f = (1, a1)⊗ . . .⊗(1, an), with a1, . . . , an ∈ G.
Let b ∈ D(f ′). Then there exist b1, . . . , bn ∈ G such that Y = U(b, b2, . . . , bn).

Proof. If n = 1 the hypothesis on b forces b = a1 so the result is clear. Assume
n ≥ 2 and let f ≡ g ⊥ a1g, where g = (1, a2) ⊗ . . . ⊗ (1, an). Then f ′ ≡ g′ ⊥ a1g
where g′ is the derived form of g. By the characterization of the value set of the
form f ′ we have b ∈ D(c, a1d) with c ∈ D(g′) and d ∈ D(g). By induction on:

U(a2, . . . , an) = U(c, b3, . . . , bn).

We shall show that this implies that Y = U(a1, . . . , an) = U(b, a1cd, b3, . . . , bn).
Let x ∈ X. Suppose first that ai(x) > 0, i ∈ {1, . . . , n}. Then b, c, d are positive
at x (since b, c, d ∈ D(f)) and b3, . . . , bn are positive at x using U(a2, . . . , an) =
U(c, b3, . . . , bn), which proves x ∈ U(b, a1cd, b3, . . . , bn). Now suppose that

b, a1cd, b3, . . . , bn

are positive at x. Since b ∈ D(c, a1d) and bc ∈ D(1, a1cd) we get bc > 0 at x
and hence c > 0 at x. Thus, using U(a2, . . . , an) = U(c, b3, . . . , bn), a2, . . . , an are
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positive at x and d > 0 at x (since d ∈ D(g)). Finally, as a1cd > 0 at x it follows
a1 > 0 at x.

Now since Y = U(a1, . . . , an) = U(b, a1cd, b3, . . . , bn) we are done taking b2 =
a1cd. �

Theorem 32. For k ≥ 1 the following are equivalent:
(1) stab(X,G) ≤ k.
(2) f ∈ Cont(X,Z) ⇒ 2kf ∈W (X,G).
(3) Every basic set Y ⊂ X is expressible as Y = U(a1, . . . , ak) for some

a1, . . . , ak ∈ G.

Proof. (1) ⇒ (2). Suppose f ∈ Cont(X,Z). Then, for any finite fan Z ⊂ X,
|Z| divides 2k. Thus

∑
x∈Z 2kf(x) ≡ 0mod|Z| holds for all finite fans Z ⊂ X, so

2kf ∈W (X,G) by the representation theorem.
(2) ⇒ (3). Y is basic so Y = U(a1, . . . , an) for some n ≥ 0. Choose n as small

as possible. If n ≤ k we are done, so suppose n > k. Define f : X → Z by:

f(x) =
{

1 if x ∈ Y
0 if x /∈ Y

Then 2kf is represented by some form φ with entries in G. We may assume that φ is
anisotropic. Let g = (1, a1)⊗ . . .⊗ (1, an). If Y = ∅ then Y = U(−1) contradicting
n > k. Thus Y 6= ∅, so - since sgnxg = 2n for all x ∈ Y - g is anisotropic. Also
g ∼ 2n−k × φ, hence g ∼= 2n−k × φ. It follows that 1 ∈ D(2n−k × φ) = D(φ), so for
some form h we have:

φ ∼= (1) ⊥ h.

Substituting and cancelling (1) this yields:

g′ ∼= (2n−k − 1)× (1) ⊥ 2n−k × h.

Since n > k, this implies 1 ∈ D(g′) so by the previuos lemma:

Y = U(1, c1, . . . , cn) = U(c2, . . . , cn)

for some c2, . . . , cn ∈ G. This contradicts the choice of n.
(3) ⇒ (1). Let Z ⊂ X be a finite fan. We want to show |Z| ≤ 2k. Replacing X

by Z we can assume X itself is a finite fan, |X| = 2m. Let x ∈ X. The singleton set
{x} is basic and m inequalities are needed to describe this set. This proves m ≤ k;
if U(a) 6= ∅ then a 6= −1 so either U(a) = X (if a = 1) or |U(a)| = 1

2 |X| (if a 6= 1).
This means that always |U(a)| ≥ 1

2 |X| - using this and induction we see that

U(a1, . . . , ak) 6= ∅ ⇒ |U(a1, . . . , ak)| ≥ 1
2k
|X|.

In particular, when U(a1, . . . , ak) = {x}, then 1 ≥ 1
2k |X| so 2k ≥ |X| = 2m - so

k ≥ m as claimed. �

25. Direct sums and group extensions of spaces of orderings

We say that (X,G) is a singleton space if X = {x}, so G = {−1, 1}. We say
that (X,G) is the direct sum of the spaces of orderings (Xi, Gi), i ∈ {1, . . . , n},
denoted (X,G) = (X1, G1)⊕ . . .⊕(Xn, Gn), if X is the disjoint union of the sets Xi

and G consists of all functions a : X → {−1, 1} such that a|Xi
∈ Gi, i ∈ {1, . . . , n}.

Finally, we say that (X,G) is a group extension of (X,G) if G has exponent 2,



THE ALGEBRAIC THEORY OF QUADRATIC FORMS - AN INTRODUCTION 61

G is a subgroup of G and X, viewed as a set of characters on G, consists of all
characters x on G such that x|G ∈ X.

Observe that any direct sum of spaces of orderings is a space of orderings. Indeed,
from the definition of direct sum it is clear that the natural homomorphism a 7→
(a|X1 , . . . , a|Xn

) from G to the product group G1 × . . . × Gn is an isomorphism.
We shall check the alternate axioms: (1) is clear. The topology on X is the direct
sum topology and X is compact in this topology. Since the natural embedding
u : X ↪→ χ(G) is continuous, u(X) is compact and hence closed in χ(G) - this
proves (2). Next, for any forms f, g with entries in G it is clear that:

f ∼= g ⇔ f |Xi
∼= g|Xi

, i ∈ {1, . . . , n}
and, consequently:

D(f) = {b ∈ G : b|Xi
∈ D(f |Xi

), i ∈ {1, . . . , n}}.
This proves (3).

We can also prove that any group extension of a space of orderings is a space
of orderings - this is a bit more complicated, though. Since G has exponent 2, G
decomposes as a direct product G = G × H. Such decomposition is not unique.
Thus, a a set of characters on G, X = X×χ(G), where χ(H) denotes the character
group of H. We shall chceck the alternate axioms of a space of orderigs: (1) and
(2) are clear, so we shall focus on proving (3).

First note that if φ is any form with entries in G, then we get forms φi with
entries in G and distinct elements h1, . . . , hs in H such that the entries of φ are
just some permutation of the entries of h1φ1 ⊥ . . . ⊥ hsφs. The forms φi will be
called the residue forms of φ.

Now we shall show that:∧
x∈X

φ(x) = 0 ⇔
∧

x∈X

∧
i∈{1,...,s}

φi(x) = 0.

In order to prove this observe that φ(x) =
∑s

i=1 hi(s)φi(x) for each x ∈ X. Now
x decomposes as x = xy with x ∈ X and y ∈ χ(H) and hi(x) = x(hi) = y(hi) and
φi(x) = φi(x). Thus∧

x∈X

φ(x) = 0 ⇔
∧

x∈X

∧
y∈χ(H)

s∑
i=1

y(hi)φi(x) = 0.

By linear independence of characters the above is equivalent to∧
x∈X

∧
i∈{1,...,s}

φi(x) = 0.

In the next step we shall prove that if φ1, . . . , φs are anisotropic then D(φ) =⋃s
i=1 hiD(φi) - otherwise D(φ) = G. For, if some φi is isotropic, then φi

∼=
(1,−1, . . .), so φ ∼= (. . . , hi,−hi, . . .) so D(φ) = G. Assume that φ1, . . . , φs are
anisotropic. One inclusion is clear and to prove the other suppose that b ∈ D(φ).
Thus we have a form ψ with φ ∼= ψ with b appearing as an entry of ψ. We can
assume ψ = h1ψ1 ⊥ . . . ⊥ htψt with t ≥ s and ψ1, . . . , ψt forms with entries in
G, h1, . . . , ht ∈ H distinct. Take φi to be the zero dimensional form if i > s.
Thus, by the previous claim applied to the difference φ ⊥ −ψ we see that φi ∼ ψi

for i ∈ {1, . . . , t}. Since the φi for i ∈ {1, . . . , s} are anisotropic, we must have
dimφi ≤ dimψi, i ∈ {1, . . . , s}. Since φ and ψ have the same dimension, this forces
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t = s and φi
∼= ψi for i ∈ {1, . . . , s}. Finally, since b is an entry of some hiψi, bhi

is an entry of ψi, so bhi ∈ D(φi), that is b ∈ hiD(φi).
Finally we are ready to prove the axiom (3). Suppose that a ∈ D(φ ⊥ ψ). We

want b ∈ D(φ), c ∈ D(ψ) such that a ∈ D(b, c). We can assume that φ and ψ have
residue form decompositions h1φ1 ⊥ . . . ⊥ htφt and h1ψ1 ⊥ . . . ⊥ htψt as above.
If all φi ⊥ ψi are anisotropic, then a ∈ hiD(φi ⊥ ψi) for some i. If φi and ψi have
both dimensions ≥ 1, we can apply (3) for (X,G) to get ahi ∈ D(b′, c′) for some
b′ ∈ D(φi), c′ ∈ D(ψi). In this case we can take b = hib

′, c = hic
′. The other

cases are even simpler: if ψi say, is zero dimensional, then a ∈ hiD(φi), so we may
take b = a, c arbitrary in D(ψ) in this case. When one of the φi ⊥ ψi is isotropic,
we shall first consider the case when φi and ψi have both dimensions ≥ 1. Then
b′ ∈ D(φi) with −b′ ∈ D(ψi) and we take b = hib

′, c = −hib
′. If ψi say, is zero

dimensional, then φi is isotropic, so D(φ) = G so take b = a, c arbitrary in D(ψ).
Thus we proved that any group extension (X,G) of a space of orderings (X,G)

is a space of orderings. Suppose that a ∈ G. What is D(1, a)? If a /∈ G, then
D(1, a) = {1, a}. If a = −1, then D(1, a) = G. If a ∈ G \ {−1}, then the value stet
of the form (1, a) is the same as the value set of (1, a) for the space of orderings
(X,G).

Next, the Witt ring W (X,G) is isometric to the group ring W (X,G)[H], where
H is any group chosen as in the previous proof.

Finally, the ring W (X,G), where (X,G) is the direct sum of spaces

(X1, G1), . . . , (Xn, Gn),

may be identified with the subring of the direct product ring
∏n

i=1W (Xi, Gi) con-
sisting of all (f1, . . . , fn) with dim fi ≡ dim fjmod2 if i 6= j.

26. Spaces of orderings of finite chain length and the structural
theorem

The chain length of a space of orderings (X,G), denoted cl(X,G), is the max-
imum integer d such that there exist a0, . . . , ad ∈ G with U(a0) ( . . . ( U(ad) or
∞ if no such finite d exists. Clearly:

U(a) ⊂ U(b) ⇔ b ∈ D(1, a) ⇔ D(1, b) ⊂ D(1, a).

It is easy to observe, that the singleton space has chain length 1 and that fans
have chain length ≤ 2. If (X,G) is the direct sum of (Xi, Gi), i ∈ {1, . . . , n}, the
chain length of (X,G) is the sum of the chain lengths of the (Xi, Gi). Similarly, if
(X,G) is a group extension of (X,G) and (X,G) is not the singleton space, then
the chain length of (X,G) is equal to the chain length of (X,G).

The following theorem describes the nature of spaces of finite chain length:

Theorem 33. Every space of orderings of finite chain length is built up, recursively,
in an essentially unique way, from singleton spaces, using the direct sum and the
group extension constructions.

The proof of this theorem is quite long and will be omitted - it can be found in
[5] on pages 65-82.

27. Isotropy theorem

The importance of spaces of orderings of finite chain length becomes clear from
the isotropy theorem:
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Theorem 34. Let (X,G) be a space of orderings and f a form with entries in G.
Suppose that f is anisotropic. Then there exists a subspace Y of X of finite chain
length such that f |Y is anisotropic.

Proof. By Zorn’s lemma we have a subspace Y ⊂ X minimal subject to the con-
dition that f |Y is anisotropic: if {Yi : i ∈ I} is a chain of subspaces of X such
that f |Yi

is anisotropic and Y =
⋂

i∈I Yi, then f |Y is anisotropic - otherwise we
would have some form g with entries in G with f ∼= (−1, 1) ⊥ g on Y and then,
by continuity, f ∼= (−1, 1) ⊥ g on Yi for some i. Thus f |Y is anisotropic but f |Z is
isotropic for each proper subspace Z of Y and we want to show that (Y,G|Y ) has
finite chain length; to simplify notation we may replace (X,G) by (Y,G|Y ) and and
having f anisotropic but f |Z isotropic for each proper subspace Z of X we want to
chow that (X,G) has finite chain length.

Let n = dim f and suppose that we have a chain U(ad) ( . . . ( U(a0) in
X. Without loss of generality we may assume that a0 = 1 and ad = −1. Since
U(ai) 6= U(ai+1), ai 6= ai+1, that is aiai+1 6= 1, so U(aiai+1) is a proper subspace
of X. Thus we have a form gi of dimension n−2 with entries in G such that f ∼ gi

on U(aiai+1), so:

f ⊗ (1, aiai+1) ∼ gi ⊗ (1, aiai+1), i ∈ {0, . . . , d− 1}.

Since U(ai+1) ⊂ U(ai), (1, ai+1) ∼= (ai, aiai+1), so we get:

(a0a1, a1a2, . . . , ad−1ad) ∼= (a1, a1a2, . . . , ad−1ad)
∼= (1, a2, a2a3, . . . , ad−1ad)
∼= (1, 1, a3, . . . , ad−1ad)
...

...
∼= (1, 1, . . . , 1,−1).

Here we use a0 = 1 and ad = −1. Thus by adding the d previous equations and
using the above result we get:

(2d− 2)× f ∼
d−1∑
i=0

gi ⊗ (1, aiai+1).

But (2d− 2)× f is anisotropic so, comparing dimensions, we see that (2d− 2)n ≤
2(n− 2)d, so d ≤ n

2 . �

There is also an extended version of the isotropy theorem, which should be
mentioned:

Theorem 35. Let (X,G) be a space of orderings and let f1, . . . , fn be forms with
entries in G. Then:

(1) If
⋂n

i=1D(fi) = ∅ then there exists a subspace Y of (X,G) of finite chain
length such that

⋂n
i=1D(fi|Y ) = ∅.

(2) If
⋂n

i=1D(fi) ⊂ kerx for some x ∈ X, then there exists a subspace Y of
(X,G) of finite chain length such that x ∈ Y and

⋂n
i=1D(fi|Y ) ⊂ kerx|Y .

The proof is also quite long and will be omitted - it can be found in [1] on pages
111-114.
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