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Abstract

In this paper we work exclusively in the setup of the laboratory of
a utility muffin research kitchen. Reaching for an oversized chromed
spoon we gather an intimate quantity of dried muffin remnants and,
brushing our scapulars aside, we proceed to dump these into the inside
of our shirts
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1 Hypermodules

Hyperrings and hyperfields were introduced first by Krasner [3], [4] in con-
nection with his work on valued fields. Multirings were introduced later and
independently in [5] (see also [6]). All of these objects are very natural and
very useful, although they are not at all widely known. For what we are
doing here we recall briefly the notion of a hyperring. A hyperring [5] is a
system (R,+, ·,−, 0, 1) where R is a set, + is a multivalued binary operation
on R, i.e., a function from R×R to the set of all subsets of R, · is a binary
operation on R, − : R → R is a function, and 0, 1 are elements of R such
that, for all r, s, t ∈ R:

(HR1) r ∈ s+ t ⇒ s ∈ r + (−t),

(HR2) r ∈ s+ 0 iff r = s,

(HR3) (r + s) + t = r + (s+ t),

(HR4) r + s = s+ r,
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(HR5) (rs)t = r(st),

(HR6) rs = sr,

(HR7) r1 = r,

(HR8) r0 = 0,

(HR9) r(s+ t) = rs+ rt.

We define hypermodules in a usual way: for a given hyperring R, a
R−hypermodule is a system (A,+, ·,−, 0), where A is a set, + is a mul-
tivalued binary operation on A, − : A→ A is a function, · : R×A→ A is an
external multiplication, and 0 ∈ A is an element such that, for all a, b, c ∈ A
and r, s ∈ R:

(HM1) c ∈ a+ b ⇒ a ∈ c+ (−b),

(HM2) a ∈ b+ 0 iff a = b,

(HM3) (a+ b) + c = a+ (b+ c),

(HM4) a+ b = b+ a,

(HM5) (rs)a = r(sa),

(HM6) 1Ra = a,

(HM7) r0A = 0A and 0Ra = 0A,

(HM8) r(a+ b) = ra+ rb,

(HM9) (r + s)a = ra+ sa.

Here, to avoid confusion, 0R and 1R were used to denote the 0 and 1 ele-
ments in the hyperring R, whilst 0A = 0 is the zero element of A. We note
that a structure (A,+,−, 0) that satisfies (HM1) - (HM4) will be called a
(commutative) hypergroup.

Remark: Just as is the case with ordinary modules, we check that

(1) (−r)a = −(ra) = r(−a),

(2) (nr)a = n(ra) = r(na),
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for all r ∈ R, a ∈ A, and n ∈ N, with the usual meaning of nx as
x+ x+ . . .+ x︸ ︷︷ ︸

n

.

Examples: (1) Just as rings are special cases of hyperrings, R−modules
over are examples of R−hypermodules.

(2) Z−hypermodules are just hypergroups.
(3) For a hyperring R an ideal is a subset I ⊂ R such that I + I ⊂ I and

RI ⊂ I. An ideal in R is an example of a R−hypermodule.
(4) If R and S are hyperrings with R ⊂ S, then S is an example of a

R−hypermodule.
(5) If R and S are hyperrings, and f : R→ S is a strong homomorphism,

that is such that f(r+ s) = f(r) + f(s), then any S−module A is also given
a structure of a R−module by r · a = f(r) · a.

2 Quotients

Let R be a hyperring and A and B two R−hypermodules with A ⊃ B. For
a ∈ A define a = a+B = ∪{a+ b : b ∈ B}, and let A/B = {a : a ∈ A}. We
define addition in A/B by

a ∈ b+ c if and only if a ∈ b+ c,

− : A/B → A/B is defined by −a = −a, the zero element of A/B is 0, and
the multiplication is ra = ra.

Proposition 1. (A/B,+,−, 0, ·) is an R−hypermodule.

Proof. It suffices to check that the addition is well-defined, the rest of the
axioms follows easily. This is a bit tricky, so we shall check it in detail. Say
x = x′ and y = y′, and we want to check that x+ y = x′ + y′. Fix a ∈ x+ y.
Then, for arbitrary b ∈ B:

a ∈ x+ y ⊂ x+ b+ y − b,

and it follows that a ∈ u+v, with u ∈ x+b and v ∈ y−b. Since x+b ⊂ x′+B,
we see that u ∈ x′ + b′, for some b′ ∈ B. Similarly, v ∈ y′ + b′′, for some
b′′ ∈ B. Consequently a ∈ x′ + b′ + y′ + b′′, and hence a ∈ a′ + b′′′ with
a′ ∈ x′ + y′ and b′′′ ∈ b′ + b′′. In particular a′ ∈ a − b′′′ and a′ ∈ x′ + y′,
and it remains to show that a = a′. This is clear: for arbitrary b′′′′ ∈ B,
a+ b′′′′ ⊂ a′ + b′′′ + b′′′′ ⊂ a′ +B, and the other inclusion is similar. The rest
of the argument follows by symmetry.
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Proposition 2. For two R−hypermodules A and B with A ⊃ B we define
the relation

x ∼ y if and only if ∃a ∈ A(x ∈ a ∧ y ∈ a) if and only if x− y ⊂ B.

This relation is an equivalence whose set of classes coincides with A/B.

Proof. The only nontrivial parts are checking that ∼ is transitive and that
both definitions of ∼ agree. The argument resembles the one used towards
the end of the Proposition 1 and hence will be omitted.

3 Morphisms

As we deal with multivalued addition here, it seems to make more sense
to define morphisms as relations rather than functions – we shall, however,
stick to the “functional” notation here and think of relations as of functions
whose values are sets. More precisely, let R be a hyperring and A and B two

R−hypermodules. A morphism A
f−→ B between A and B is defined as a

function f : A→ 2B such that

(M1) f(a+ b) = f(a) + f(b),

(M2) f(ra) = rf(a),

(M3) f(−a) = −f(a),

(M4) f(0) = {0}.

We shall denote the category of R−hypermodules by R −HMod from now
on. Also, for purely aesthetical reasons, we shall denote morphisms of

R−hypermorphisms by A
f
−�−→ B to emphasise that f is, in fact, a function

with values in 2B.

Remarks: (1) Note that for morphisms A
f
−�−→ B and B

g
−�−→ C the compo-

sition A
g◦f
−�−→ C is defined as follows:

g ◦ f(a) = {c ∈ C : ∃b ∈ B[(b ∈ f(a)) ∧ c ∈ g(b)]}.

(2) One of the advantages of defining morphisms as multi-valued rather
than single-valued functions is that this notion enables us to define algebraic
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operations on morphisms: for A
f,g
−�−→ B, the morphisms f, g give rise to

A
f+g
−�−→ B defined as

(f + g)(a) = f(a) + g(a).

One checks that f + g is, indeed, a morphism.

(3) As a consequence of (M1) we get that, for a morphism A
f
−�−→ B,

im f = {b ∈ B : ∃a ∈ A[b ∈ f(a)]} is a hypermodule with im f ⊂ B.
We need to have a clear understanding of what monomorphisms and epi-

morphisms are. For that purpose we shall introduce the notions of weak and

strong injections and surjections. LetA
f
−�−→ B be a morphism ofR−hypermodules.

We say that f is weakly injective if

∀a, b ∈ A[(f(a) ∩ f(b) 6= ∅)⇒ (a = b)].

We say that f is strongly injective if

∀a, b ∈ A[(f(a) = f(b))⇒ (a = b)].

Remarks: (1) Clearly weakly injective morphisms are also strongly in-
jective. ,,Strongly injective” means nothing but ,,injective as a function with
values in 2B”.

(2) If a morphism A
f
−�−→ B is weakly injective, it gives a rise to the following

equivalence relation on the set B:

x ∼ y if and only if ∃a ∈ A(x ∈ f(a) ∧ y ∈ f(a)).

Indeed, it suffices to check that the relation is well-defined. This is the case,
for if, for some a, b ∈ A, f(a) ∩ f(b) 6= ∅, then a = b and, consequently,
f(a) = f(b).

Proposition 3. In the category R −HMod if B
f
−�−→ C is a monomorphism

then it is strongly injective.

Proof. Suppose that B
f
−�−→ C is a monomorphism. Fix b1, b2 ∈ B and let

f(b1) = f(b2). Define mappings b̂1, b̂2 : R → 2B by b̂1(r) = {rb1} and

b̂2(r) = {rb2} (here R is viewed as a R−hypermodule). By (HM9) b̂1 and

b̂2 are well-defined morphisms of R−hypermodules. Moreover, f ◦ b̂1(r) =

f(rb1) = rf(b1) = rf(b2) = f(rb2) = f ◦ b̂2(r), and thus b̂1 = b̂2. In particular

b̂1(1) = b̂2(1), that is b1 = b2.
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Proposition 4. In the category R − HMod if B
f
−�−→ C is weakly injective,

then it is a monomorphism.

Proof. Say B
f
−�−→ C is weakly injective, and let A

g,h
−�−→ B be two morphisms

such that f ◦ h = f ◦ g. It suffices to show that h(a) = g(a), for a ∈ A.
Indeed, fix an a ∈ A and let b ∈ h(a). Then f(b) ⊂ f ◦ h(a) = f ◦ g(a),
and therefore, for some b′ ∈ g(a), f(b) ∩ f(b′) 6= ∅. Thus b = b′ and hence
b ∈ g(c). The other inclusion is proved analogously.

Example: We shall provide an example of a strongly injective mor-
phism that is not weakly injective. Consider the linearly ordered set [0,+∞)
equipped with the usual multiplication and a multivalued addition defined
as follows:

a+ b =

{
max{a, b}, if a 6= b

[0, a], if a = b.

The opposite element function− : [0,+∞) → [0,+∞) is given by −a = a.
The structure ([0,+∞),+, ·,−, 0, 1) is a special case of a hyperfield defined
by a linear ordering studied, for example, in [6, 4.7] so, in particular, it is a

hyperring and a hypermodule over itself. Define the map [0,+∞)
f
−�−→ [0,+∞)

by f(a) = [0, a]. One checks that f is a morphism, for if a 6= b, then

f(a+ b) = [0,max{a, b}],

and
f(a) + f(b) = [0, a] + [0, b] = [0,max{a, b}],

whereas for a = b:
f(a+ b) = [0, a]

and
f(a) + f(b) = [0, a] + [0, a] = [0, a].

Clearly f is strongly injective, but not weakly injective.
Similarly, we introduce the notions of weak and strong surjections. A

morphism A
f
−�−→ B of R−hypermodules will be said to be weakly surjective

if
∀b ∈ B∃a ∈ A[b ∈ f(a)],

and strongly surjective, if

∀B′ ∈ 2B∃a ∈ A[B′ = f(a)].
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Remarks: (1) Clearly strongly surjective morphisms are also weakly
surjective. ,,Strongly surjective” means nothing but ,,surjective as a function
with values in 2B”.

(2) There are obvious examples of weakly surjective morphisms that are
not strongly surjective, for example the identity map on any hypermodule is
weakly surjective, but not strongly surjective.

Proposition 5. In the category R − HMod if A
f
−�−→ B is an epimorphism

then it is weakly surjective.

Proof. Suppose that f is an epimorphism. Define morphisms B
0,π
−�−→ B/im f

by 0(b) = {0} and π(b) = {b}. Then:

π ◦ f = {0} = 0 ◦ f,

so that π = 0, that is f is a weak surjection.

Proposition 6. In the category R−HMod if A
f
−�−→ B is strongly surjective,

then it is an epimorphism.

Proof. Assume that A
f
−�−→ B is strongly surjective and that B

g,h
−�−→ C are

morphisms such that g ◦ f = h ◦ f . For a fixed b ∈ B let a ∈ A be such that
f(a) = {b}. Then g(b) = g(f(a)) = g ◦f(a) = h◦f(a) = h(f(a)) = h(b).

Remark: It follows from Propositions 3 and 5 that an isomorphism of
R−hypermodules is strongly injective and weakly surjective.

Proposition 7. In the category R − HMod a morphism A
f
−�−→ B is an

isomorphism if and only if it is a single-valued bijective morphism.

Proof. Firstly, assume that A
f
−�−→ B is an isomorphism and suppose that f

is not single-valued, that is for some a ∈ A there exist b1, b2 ∈ f(a) with

b1 6= b2. Since f is an isomorphism, there exists a morphism B
g
−�−→ A such

that f ◦ g = idB and g ◦ f = idA. In particular, g is an isomorphism as well,
and thus it is strongly injective. Moreover, g(b1) = {a} and g(b2) = {a}, so
that b1 = b2 – a contradiction. Hence f is single-valued, strongly injective
and weakly surjective, and thus bijective as a function.

Next, suppose that A
f
−�−→ B is a single-valued bijective morphism. Define

the map B
g
−�−→ A by

g(b) = {a} if and only if f(a) = {b}.
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Clearly f ◦ g = idB and g ◦ f = idA, and to check that g is a morphism fix
b1, b2 ∈ B and let a1, a2 ∈ A satisfy f(a1) = b1 and f(a2) = b2. Observe that:

a ∈ g(b1 + b2) ⇔ a = g(b) ∧ b ∈ b1 + b2 ⇔ b = f(a) ∧ b ∈ b1 + b2

⇔ f(a) ∈ f(a1) + f(a2) = f(a1 + a2)⇔ a ∈ a2 + a2

⇔ a ∈ g(b1) + g(b2).

Thus g(b1 + b2) = g(b1) + g(b2).

4 Initial and terminal objects

Proposition 8. For a fixed hyperring R the zero R−hypermodule {0} is both
the initial and the terminal object in the category R−HMod. In particular,
R−HMod is equipped with the zero object.

Remark: Note that the uniqueness of the morphism {0} 9 A is guar-
anteed by the axiom (M4).
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